A theoretical analysis and computational study of biomaterial sample detection with surface plasmon resonance (SPR) phenomenon spectroscopy are presented in this work with the objective of achieving more sensitive detection. In this paper, a Fe3O4@Au core-shell, a nanocomposite spherical nanoparticle consisting of a spherical Fe3O4 core covered by an Au shell, was used as an active material for biomaterial sample detection, such as for blood plasma, haemoglobin (Hb) cytoplasm and lecithin, with a wavelength of 632.8 nm. We present the detection amplification technique through an attenuated total reflection (ATR) spectrum in the Kretschmann configuration. The system consists of a four-layer material, i.e., prism/Ag/Fe3O4@Au + biomaterial sample/air. The effective permittivity determination of the core-shell nanoparticle (Fe3O4@Au) and the composite (Fe3O4@Au + biomaterial sample) was done by applying the effective medium theory approximation, and the calculation of the reflectivity was carried out by varying the size of the core-shell, volume fraction and biomaterial sample. In this model, the refractive index (RI) of the BK7 prism is 1.51; the RI of the Ag thin film is 0.13455 + 3.98651i with a thickness of 40 nm; and the RI of the composite is varied depending on the size of the nanoparticle core-shell and the RI of the biomaterial samples. Our results show that by varying the sizes of the core-shell, volume fraction and the RIs of the biomaterial samples, the dip in the reflectivity (ATR) spectrum is shifted to the larger angle of incident light, and the addition of a core-shell in the conventional SPR-based biosensor leads to the enhancement of the SPR biosensor sensitivity. For a core-shell with a radius a = 2.5 nm, the sensitivity increased by 10% for blood plasma detection, 47.72% for Hb cytoplasm detection and by 22.08% for lecithin detection compared to the sensitivity of the conventional SPR-based biosensor without core-shell addition.
The purpose of this research is to improve the understanding of scientific concepts and communication of high school students in Indonesia. The method used in this research is quasi experiment method with the pre-test and post-test. Subjects of the research were obtained from random cluster sampling with 60 students. The experimental class was given treatment of the Thinking Aloud Pair Problem Solving method and the control class was given the treatment of the discussion method. The results of this study indicate an increase between the pre-test and post-test understanding of concepts and scientific communication both in the experimental class and the control class. However, the experimental class experienced more significant escalation with an effect size value of 0.3 in the medium category. The further research need to be applied the use of Thinking Aloud Pair Problem Solving method in more than one class to see the consistency of Thinking Aloud Pair Problem Solving method in improving students’ understanding of concepts and scientific communication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.