Abstrak :Deteksi objek pada suatu citra 2 dimensi merupakan suatu proses yang cukup kompleks untuk dilakukan oleh karena itu diperlukan suatu pendekatan visi komputer (computer vision) sehingga bagian objek yang diinginkan dapat dikenali komputer dengan akurat. Penelitian ini akan memaparkan penerapan metode segmentasi warna dengan deteksi warna HSV oleh Giannakopoulos untuk menghasilkan objek segmen citra berupa blob sehingga dapat terdeteksi komputer. Berdasarkan hasil pengujian dan analisa diperoleh kesimpulan bahwa kontrol pengguna dalam hal penentuan sampel warna dan toleransi warna berperan penting dalam proses segmentasi; sampel warna akan menghasilkan nilai acuan warna sebagai acuan segmentasi dan toleransi warna digunakan sebagai jangkauan filter dalam proses segmentasi. Proses deteksi objek akan mengolah segmen warna yang dihasilkan oleh proses segmentasi sehingga dapat diketahui banyaknya objek terdeteksi, luas area dan titik pusat tiap objek.
Kata Kunci : computer vision, segmentasi warna, deteksi warna, giannakoupolos
PendahuluanPerkembangan sistem computer vision atau visi komputer saat ini telah banyak dimanfaatkan dalam membantu manusia dalam proses pengenalan atau deteksi objek. Proses pengenalan suatu objek merupakan pekerjaan yang cukup sulit sehingga dalam proses tersebut disarankan untuk mengimplementasikan teknologi computer vision guna mengambil peranan untuk mengenali objek dalam suatu citra 2 dimensi.Dalam proses pengenalan objek atau deteksi objek diperlukan suatu pemisahan bagian atau segmen tertentu dalam citra yang akurat, proses pemisahan tersebut dikenal sebagai proses segmentasi. Proses pengenalan segmen merupakan salah satu kunci dalam mendapatkan suatu hasil pengenalan atau deteksi yang akurat. Segmentasi membagi suatu
Batik classification which have diverse motifs need to be done to distinguish a pattern with another. In this paper, we present batik motifs(Ceplok, Parang, Semen, and Nitik) classification using Hu Moment Invariants, Eccentricity, and Compactness feature description. In classification stage, K-nearest neighbor have been used, which is traditional nonparametric statistical classifier. Set of different experiments on binary images regular, opening image, and closing image of 200 images Batik from some batik literature published by Dinas Perindustrian, Perdagangan, dan Koperasi DIY have been done and variety of results have been presented. The results showed that the best classification result obtained from Hu Moment Invariants feature description.
Batik is a craft that has high artistic value. Batik also has become part of Indonesian culture (especially Java) since long. There are so many designs old patterns of Batik. One of traditional batik motif is Parang. Batik Parang have decorative striped pattern and lined tilted. This research analizes characteristic of batik Parang and develops a software to automatically identify motifs of batik Parang image using line feature extraction. The pattern can be identified through a group of points that form the edge of a line and then detected as a line using Hough transform. The research material was 50 image of the sample data and 30 image of research datarespectivelyParang and non Parang. Both the accuracy of Batik Parang and non Parang recognition are 90%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.