Species distribution models are a very popular tool in ecology and biogeography and have great potential to help direct conservation efforts. Models are traditionally tested by using half the original species records to build the model and half to evaluate it. However, this can lead to overly optimistic estimates of model accuracy, particularly when there are systematic biases in the data. It is better to evaluate models using independent data. This study used independent species records from a new to survey to provide a more rigorous evaluation of distribution‐model accuracy. Distribution models were built for reptile, amphibian, butterfly and mammal species. The accuracy of these models was evaluated using the traditional approach of partitioning the original species records into model‐building and model‐evaluating datasets, and using independent records collected during a new field survey of 21 previously unvisited sites in diverse habitat types. We tested whether variation in distribution‐model accuracy among species could be explained by species detectability, range size, number of records used to build the models, and body size. Estimates of accuracy derived using the new species records correlated positively with estimates generated using the traditional data‐partitioning approach, but were on average 22% lower. Model accuracy was negatively related to range size and number of records used to build the models, and positively related to the body size of butterflies. There was no clear relationship between species detectability and model accuracy. The field data generally validated the species distribution models. However, there was considerable variation in model accuracy among species, some of which could be explained by the characteristics of species.
Coat condition can be influenced by a wide variety of disorders and thus provides a useful tool for noninvasive health and welfare assessments in wild and captive animals. Using Lemur catta as an exemplar, we offer a 6-step scoring system for coat and tail condition, ranging from perfectly fluffy to half or more of body and tail being hairless. The categories are described in detail and illustrated with sample pictures from a wild population in Berenty Reserve, Madagascar. Furthermore, we elaborate on intermediate conditions and discoloration of fur. Coat condition scoring allows the comparison between years, seasons, and the effect of toxin, disease or stress. Although this system was developed for wild L. catta, we believe it can also be of value for other species. We recommend scoring coat condition in healthy wild mammal populations to give a baseline on yearly and seasonal variations vs. deteriorating health conditions or pathology.
The physiological compensation of animals in changing environments through acclimatization has long been considered to be of minor importance in tropical ectotherms due to more stable climatic conditions compared to temperate regions. Contrasting this assumption are reports about a range of metabolic adjustments in tropical species, especially during the last two decades from field acclimatized animals. Metabolic rates are strongly linked to temperature in ectotherms but they also reflect energetic requirements and restrictions. We therefore postulate that the observed variety of acclimatization patterns in tropical reptiles results from an interaction of multiple influences, including food and water availability, rather than from thermal constraints alone. We present new data from two sympatric Malagasy lizards with contrasting acclimatization patterns and, complemented with an extensive literature search, discuss the variety of acclimatization patterns in tropical reptiles with regard to thermal and energetic influences. This broad consideration of constraints allows a rearrangement of apparently controversial patterns into a scheme of decreasing metabolic costs, including two new categories for selective and selective inverse acclimatization, where metabolic shifts are restricted to body temperatures below those preferred during activity.
Characterizing the respective nitrogen (N) use efficiency requires understanding the N flow of inputs and outputs from a commercial broiler barn. In this study, an N mass balance was performed for one entire growing cycle. The objectives were to quantify, sample, and analyze all N components entering and leaving the barn. The N from feed, chickens, and bedding material was considered as inputs, the outputs included the N accretion in mature broilers, the total N emissions (N TNE ), the N accumulation in litter, and the N of mortality. Of particular relevance was the determination of an appropriate method to mirror the heterogenic texture of the litter. Litter samples were collected weekly according to a defined procedure. The major N input was feed N, accounting for 99% of the total N input. After the 36-day growing cycle, the N outputs were portioned as follows: 59% (1741.3 kg N) in mature broilers, 37% (1121.3 kg N) accumulated in litter, and 4% in NTNE (114.3 kg N). The N accumulations in broiler tissue and litter agree well with other studies. The measured emissions were consistently lower compared to other references, due to the fact that these references were mainly based on studies where broilers were raised on built-up litter. In contrast to in situ quantified N emissions in this study, other published values were assumed to be the difference of N between inputs and outputs. This study illustrates that extensive sampling of litter is a prerequisite for calculating litter masses. The accurate specification of the litter texture proved to be crucial within the mass balance approach. With this information, the feasible improvements within management practices can be identified.Keywords: ammonia; emissions; mass balance; litter sampling In Europe, the livestock sector strongly influences the nitrogen (N) cycle because large amounts of nutrients, water, and energy are related to the actions of that sector (Steinfeld and Wasenaar, 2007;Erisman et al., 2008). Broiler operations have become larger and more concentrated in recent years due to a growing demand for broiler meat, the production of which is the second largest worldwide (Niu et al., 2009). As a result, the concentration of nutrients in the form of waste products such as manure (litter) and gaseous emissions (Gous, 2010) has increased. The nutrient of the greatest concern in gaseous emissions is nitrogen (N) in the form of ammonia (NH 3 ). Ammonia is formed from the breakdown of nitrogenous waste products in broiler manure (undigested proteins and uric acid) by exogenous enzymes produced by microorganisms (Atapattu et al., 2008).One abatement strategy of NH 3 involves the optimization of dietary composition (protein level) by providing the best feed conversion ratio for broilers and minimizing the excretion of manure (Elwinger and Svensson, 1996;Ferguson et al., 1998;Robertson et al., 2002). Additionally, feeding additives can improve the feed conversion rate of broilers (Ritz et al., 2004;Schiavone et al., 2008). Ammonia is removed from the ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.