BackgroundThe large surplus of crude glycerol, as main low-value waste stream in biodiesel production, has led to the investigation of new possibilities for the production of value-added chemicals from this feedstock. New and efficient (bio-) catalysts are needed that are able to convert glycerol to versatile chemical building blocks. This would contribute to further develop away from a mainly petroleum based, to a sustainable, bio-based industry. One promising group of discussed building block chemicals are dicarbonic acids.ResultsHere, we report the efficient synthesis of malate from glycerol using Ustilago trichophora RK089, which was identified in a screening of 74 Ustilaginaceae. For economically feasible production that can compete with existing processes, a high productivity is required. By adaptive laboratory evolution, the growth and production rate were increased by 2.5- and 6.6-fold, respectively. Further medium optimization increased the final titer, yield, and overall production rate to 196 g L−1, 0.82 gmal ggly−1, and 0.39 g L−1 h−1, respectively.ConclusionsThis titer is the highest reported for microbial malate production, making U. trichophora TZ1 a promising microbial production host for malate from crude glycerol, especially since it is not genetically engineered. Since this production process starts from an industrial waste stream as substrate and yields an interesting platform chemical, which can be used to replace petro-chemicals, it greatly contributes to a sustainable bio-economy.
BackgroundIn order to establish a cost-efficient biodiesel biorefinery, valorization of its main by-product, crude glycerol, is imperative. Recently, Ustilago trichophora TZ1 was found to efficiently produce malic acid from glycerol. By adaptive laboratory evolution and medium optimization, titer and rate could be improved significantly.ResultsHere we report on the investigation of this strain in fed-batch bioreactors. With pH controlled at 6.5 (automatic NaOH addition), a titer of 142 ± 1 g L−1 produced at an overall rate of 0.54 ± 0.00 g L−1 h−1 was reached by optimizing the initial concentrations of ammonium and glycerol. Combining the potential of bioreactors and CaCO3 as buffer system, we were able to increase the overall production rate to 0.74 ± 0.06 g L−1 h−1 with a maximum production rate of 1.94 ± 0.32 g L−1 reaching a titer of 195 ± 15 g L−1. The initial purification strategy resulted in 90 % pure calcium malate as solid component. Notably, the fermentation is not influenced by an increased temperature of up to 37 °C, which reduces the energy required for cooling. However, direct acid production is not favored as at a lowered pH value of pH 4.5 the malic acid titer decreased to only 9 ± 1 g L−1. When using crude glycerol as substrate, only the product to substrate yield is decreased. The results are discussed in the context of valorizing glycerol with Ustilaginaceae.ConclusionsCombining these results reveals the potential of U.trichophora TZ1 to become an industrially applicable production host for malic acid from biodiesel-derived glycerol, thus making the overall biodiesel production process economically and ecologically more feasible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.