Significance: Recent clinical evidence identified anemia to be correlated with severe complications of cardiovascular disease (CVD) such as bleeding, thromboembolic events, stroke, hypertension, arrhythmias, and inflammation, particularly in elderly patients. The underlying mechanisms of these complications are largely unidentified.Recent Advances: Previously, red blood cells (RBCs) were considered exclusively as transporters of oxygen and nutrients to the tissues. More recent experimental evidence indicates that RBCs are important interorgan communication systems with additional functions, including participation in control of systemic nitric oxide metabolism, redox regulation, blood rheology, and viscosity. In this article, we aim to revise and discuss the potential impact of these noncanonical functions of RBCs and their dysfunction in the cardiovascular system and in anemia.Critical Issues: The mechanistic links between changes of RBC functional properties and cardiovascular complications related to anemia have not been untangled so far.Future Directions: To allow a better understanding of the complications associated with anemia in CVD, basic and translational science studies should be focused on identifying the role of noncanonical functions of RBCs in the cardiovascular system and on defining intrinsic and/or systemic dysfunction of RBCs in anemia and its relationship to CVD both in animal models and clinical settings. Antioxid. Redox Signal. 26, 718–742.
Red blood cells (RBCs) influence rheology, and release ADP, ATP, and nitric oxide, suggesting a role for RBCs in hemostasis and thrombosis. Here, we provide evidence for a significant contribution of RBCs to thrombus formation. Anemic mice showed enhanced occlusion times upon injury of the carotid artery. A small population of RBCs was located to platelet thrombi and enhanced platelet activation by a direct cell contact via the FasL/FasR (CD95) pathway known to induce apoptosis. Activation of platelets in the presence of RBCs led to platelet FasL exposure that activated FasR on RBCs responsible for externalization of phosphatidylserine (PS) on the RBC membrane. Inhibition or genetic deletion of either FasL or FasR resulted in reduced PS exposure of RBCs and platelets, decreased thrombin generation, and reduced thrombus formation in vitro and protection against arterial thrombosis in vivo. Direct cell contacts between platelets and RBCs via FasL/FasR were shown after ligation of the inferior vena cava (IVC) and in surgical specimens of patients after thrombectomy. In a flow restriction model of the IVC, reduced thrombus formation was observed in FasL-/- mice. Taken together, our data reveal a significant contribution of RBCs to thrombosis by the FasL/FasR pathway.
To date, no reliable clinically applicable biomarker has been established for Parkinson’s disease. Our results indicate that a long anticipated blood test for Parkinson’s disease may be realized. Following the isolation of neuron-derived extracellular vesicles of Parkinson’s disease patients and non-Parkinson’s disease individuals, immunoblot analyses were performed to detect extracellular vesicle-derived α-synuclein. Pathological α-synuclein forms derived from neuronal extracellular vesicles could be detected under native conditions and were significantly increased in all individuals with Parkinson’s disease and clearly distinguished disease from the non-disease state. By performing an α-synuclein seeding assay these soluble conformers could be amplified and seeding of pathological protein folding was demonstrated. Amplified α-synuclein conformers exhibited β-sheet-rich structures and a fibrillary appearance. Our study demonstrates that the detection of pathological α-synuclein conformers from neuron-derived extracellular vesicles from blood plasma samples has the potential to evolve into a blood-biomarker of Parkinson’s disease that is still lacking so far. Moreover, the distribution of seeding-competent α-synuclein within blood exosomes sheds a new light of pathological disease mechanisms in neurodegenerative disorders.
Increased production of reactive oxygen species and failure of the antioxidant defense system are considered to play a central role in the pathogenesis of cardiovascular disease. The transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a key master switch controlling the expression of antioxidant and protective enzymes, and was proposed to participate in protection of vascular and cardiac function. This study was undertaken to analyze cardiac and vascular phenotype of mice lacking Nrf2. We found that Nrf2 knock out (Nrf2 KO) mice have a left ventricular (LV) diastolic dysfunction, characterized by prolonged E wave deceleration time, relaxation time and total diastolic time, increased E/A ratio and myocardial performance index, as assessed by echocardiography. LV dysfunction in Nrf2 KO mice was associated with cardiac hypertrophy, and a downregulation of the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA2a) in the myocardium. Accordingly, cardiac relaxation was impaired, as demonstrated by decreased responses to β-adrenergic stimulation by isoproterenol ex vivo, and to the cardiac glycoside ouabain in vivo. Surprisingly, we found that vascular endothelial function and endothelial nitric oxide synthase (eNOS)-mediated vascular responses were fully preserved, blood pressure was decreased, and eNOS was upregulated in the aorta and the heart of Nrf2 KO mice. Taken together, these results show that LV dysfunction in Nrf2 KO mice is mainly associated with cardiac hypertrophy and downregulation of SERCA2a, and is independent from changes in coronary vascular function or systemic hemodynamics, which are preserved by a compensatory upregulation of eNOS. These data provide new insights into how Nrf2 expression/function impacts the cardiovascular system.
The main function of red blood cells (RBCs) is the transport of respiratory gases along the vascular tree. To fulfill their task, RBCs are able to elastically deform in response to mechanical forces and, pass through the narrow vessels of the microcirculation. Decreased RBC deformability was observed in pathological conditions linked to increased oxidative stress or decreased nitric oxide (NO) bioavailability, like hypertension. Treatments with oxidants and with NO were shown to affect RBC deformability ex vivo, but the mechanisms underpinning these effects are unknown. In this study we investigate whether changes in intracellular redox status/oxidative stress or nitrosation reactions induced by reactive oxygen species (ROS) or NO may affect RBC deformability. In a case-control study comparing RBCs from healthy and hypertensive participants, we found that RBC deformability was decreased, and levels of ROS were increased in RBCs from hypertensive patients as compared to RBCs from aged-matched healthy controls, while NO levels in RBCs were not significantly different. To study the effects of oxidants on RBC redox state and deformability, RBCs from healthy volunteers were treated with increasing concentrations of tert-butylhydroperoxide (t-BuOOH). We found that high concentrations of t-BuOOH (≥ 1 mM) significantly decreased the GSH/GSSG ratio in RBCs, decreased RBC deformability and increased blood bulk viscosity. Moreover, RBCs from Nrf2 knockout (KO) mice, a strain genetically deficient in a number of antioxidant/reducing enzymes, were more susceptible to t-BuOOH-induced impairment in RBC deformability as compared to wild type (WT) mice. To study the role of NO in RBC deformability we treated RBC suspensions from human volunteers with NO donors and nitrosothiols and analyzed deformability of RBCs from mice lacking the endothelial NO synthase (eNOS). We found that NO donors induced S-nitrosation of the cytoskeletal protein spectrin, but did not affect human RBC deformability or blood bulk viscosity; moreover, under unstressed conditions RBCs from eNOS KO mice showed fully preserved RBC deformability as compared to WT mice. Pre-treatment of human RBCs with nitrosothiols rescued t-BuOOH-mediated loss of RBC deformability. Taken together, these findings suggest that NO does not affect RBC deformability per se, but preserves RBC deformability in conditions of oxidative stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.