This is the first study investigating the chemical composition of essential oils (EOs) isolated from different tissues of Carissa macrocarpa (Eckl.) A.DC., their antimicrobial activity and the anatomical characters of the aerial organs and the fruits. The main EO components were pentadecanal and tetradecan-1-ol (31.9 and 16.5% in fresh leaf EO, respectively), (E)-nerolidol and caryophyllene oxide (27.3 and 15.0% in fruit EO, respectively), linalool and hexahydrofarnesyl acetone (30.9 and 24.9% in stem EO, respectively), benzyl benzoate (24.3% in flower EO). The fruit EO was more active against Candida albicans (MIC = 0.46 mg/mL) compared to the reference antibiotic (17.66 mg/mL). Furthermore, at this concentration it inhibited all the Gram-positive bacteria. Concerning the anatomical features, it is noteworthy to mention the presence of a large cluster of calcium oxalate crystals inside some parenchymatous cells. Large ducts corresponding to non articulated laticifers were identified in the cortex of leaf, stem and fruit pericarp. The laticifers categories and their distribution are taxonomically important to discriminate this species from others acclimated in different countries. Considering the obtained results, EOs of C. macrocarpa can be a good source of antimicrobial compounds, contributing to solve the problem of microbial resistance to antibiotics.
The purpose of this study was to identify the chemical composition and the antibacterial activity of the essential oils (EOs) extracted from the green tops of Daucus carota L. subsp. sativus (Hoffm.) Arcang. plants producing yellow roots (DcsYR) and those producing orange roots (DcsOR) and from two varieties of Foeniculum vulgare subsp. vulgare cultivated in Tunisia. Analyses revealed that the EOs from the two D. carota varieties were rich in constituents belonging to sesquiterpenes. Phenylpropanoids and non‐terpene derivatives were the most abundant classes of compounds in the EOs from the two varieties of F. vulgare, of which compositions were predominated by (E)‐anethole and p‐acetonylanisole. All the tested EOs were significantly more effective against Gram‐negative bacteria, and that obtained from var. azoricum was more active against the yeast Candida albicans than the reference drug. The EOs obtained from these by‐products showed indeed interesting potential to be promoted as natural antimicrobials in food preservation systems, as well as the possibility to be used in flavor industries.
Mandragora autumnalis Bertol. (Solanaceae family), synonym of M. officinalis Mill., occurs in North Africa and grows natively in Northern and Central Tunisia, in humid to sub‐arid climates. The ripe fruits of mandrake are odiferous with a particular, indescribable, specific odor, shared, to a lesser extent, by the leaves and roots. We carried out an investigation of the essential oils (EOs) and of the aromatic volatiles emitted by fresh leaves, roots and ripe fruits of M. autumnalis growing wild in Central Tunisia. The EOs were obtained from freshly collected plant material by hydrodistillation, while the volatile emissions from the powdered M. autumnalis tissues were sampled by headspace solid phase microextraction (HS‐SPME); both types of samples were analyzed by gas chromatography‐mass spectrometry (GC/MS). Fifty‐one compounds representing 96.2–98.6 % of the total oil compositions were identified in the three tissues and belonged to different chemical classes specifically in 16 esters, 12 alcohols, 12 hydrocarbons, 6 ketones, 3 aldehydes and 3 acids. The main constituents were pentadecanoic acid (34.2 %) and hexadecanol (26.3 %). A total of 78 volatile compounds emanating from M. autumnalis tissues, representing 94.1–96.4 % of the total volatile compositions, were identified: 22 esters, 11 alcohols, 9 aldehydes, 14 ketones, 7 nitrogen, 10 hydrocarbons, 2 lactones, 1 sulfur and 2 ethers. Ethyl hexanoate (12.3 %) and 1,3‐butanediol (12.3 %) were at the highest relative percentages. This study characterizes and distinguishes M. autumnalis from Tunisia and attributes the compounds responsible for the intoxicating and particular odor of fruits. Chemosystematic of Mandragora autumnalis based on the identification of essential oils and headspace volatiles of each of its organ can be used to characterize this species according to its geographic distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.