Why are there more species in the tropics than in temperate regions? In recent years, this long-standing question has been addressed primarily by seeking environmental correlates of diversity. But to understand the ultimate causes of diversity patterns, we must also examine the evolutionary and biogeographic processes that directly change species numbers (i.e., speciation, extinction, and dispersal). With this perspective, we dissect the latitudinal diversity gradient in hylid frogs. We reconstruct a phylogeny for 124 hylid species, estimate divergence times and diversification rates for major clades, reconstruct biogeographic changes, and use ecological niche modeling to identify climatic variables that potentially limit dispersal. We find that hylids originated in tropical South America and spread to temperate regions only recently (leaving limited time for speciation). There is a strong relationship between the species richness of each region and when that region was colonized but not between the latitudinal positions of clades and their rates of diversification. Temperature seasonality seemingly limits dispersal of many tropical clades into temperate regions and shows significant phylogenetic conservatism. Overall, our study illustrates how two general principles (niche conservatism and the time-for-speciation effect) may help explain the latitudinal diversity gradient as well as many other diversity patterns across taxa and regions.
Speciation is the process that ultimately generates species richness. However, the time required for speciation to build up diversity in a region is rarely considered as an explanation for patterns of species richness. We explored this "time-for-speciation effect" on patterns of species richness in emydid turtles. Emydids show a striking pattern of high species richness in eastern North America (especially the southeast) and low diversity in other regions. At the continental scale, species richness is positively correlated with the amount of time emydids have been present and speciating in each region, with eastern North America being the ancestral region. Within eastern North America, higher regional species richness in the southeast is associated with smaller geographic range sizes and not greater local species richness in southern communities. We suggest that these patterns of geographic range size variation and local and regional species richness in eastern North America are caused by glaciation, allopatric speciation, and the time-for-speciation effect. We propose that allopatric speciation can simultaneously decrease geographic range size and increase regional diversity without increasing local diversity and that geographic range size can determine the relationship between alpha, beta, and gamma diversity. The time-for-speciation effect may act through a variety of processes at different spatial scales to determine diverse patterns of species richness.
Geographic patterns of species richness ultimately arise through the processes of speciation, extinction, and dispersal, but relatively few studies consider evolutionary and biogeographic processes in explaining these diversity patterns. One explanation for high tropical species richness is that many species-rich clades originated in tropical regions and spread to temperate regions infrequently and more recently, leaving little time for species richness to accumulate there (assuming similar rates of diversification in temperate and tropical regions). However, the major clades of anurans (frogs) and salamanders may offer a compelling counterexample. Most salamander families are predominately temperate in distribution, but the one primarily tropical clade (Bolitoglossinae) contains nearly half of all salamander species. Similarly, most basal clades of anurans are predominately temperate, but one largely tropical clade (Neobatrachia) contains approximately 96% of anurans. In this article, I examine patterns of diversification in frogs and salamanders and their relationship to large-scale patterns of species richness in amphibians. I find that diversification rates in both frogs and salamanders increase significantly with decreasing latitude. These results may shed light on both the evolutionary causes of the latitudinal diversity gradient and the dramatic but poorly explained disparities in the diversity of living amphibian clades.
Studies that have explored the origins of patterns of community structure from a phylogenetic perspective have generally found either convergence (similarity) in community structure between regions through adaptive evolution or lack of convergence (dissimilarity) due to phylogenetic conservatism in the divergent ecological characteristics of lineages inhabiting different regions. We used a phylogenetic approach to document a third pattern in the structure of emydid turtle communities. Emydid communities in southeastern North America tend to have a higher proportion of aquatic species than those in the northeast. This pattern reflects phylogenetic conservatism in the ecology and biogeography of two basal emydid clades, limiting convergence in community structure between these regions. However, differences in community structure between northeastern and southeastern North America have also been homogenized considerably by the dispersal of species with phylogenetically conserved ecological characteristics between regions. This pattern of ecologically conservative dispersal may be important in many continental and oceanic systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.