IMPORTANCE Previous studies have evaluated the diagnostic effect of amyloid positron emission tomography (PET) in selected research cohorts. However, these research populations do not reflect daily practice, thus hampering clinical implementation of amyloid imaging. OBJECTIVE To evaluate the association of amyloid PET with changes in diagnosis, diagnostic confidence, treatment, and patients' experiences in an unselected memory clinic cohort. DESIGN, SETTING, AND PARTICIPANTS Amyloid PET using fluoride-18 florbetaben was offered to 866 patients who visited the tertiary memory clinic at the VU University Medical Center between January 2015 and December 2016 as part of their routine diagnostic dementia workup. Of these patients, 476 (55%) were included, 32 (4%) were excluded, and 358 (41%) did not participate. To enrich this sample, 31 patients with mild cognitive impairment from the University Medical Center Utrecht memory clinic were included. For each patient, neurologists determined a preamyloid and postamyloid PET diagnosis that existed of both a clinical syndrome (dementia, mild cognitive impairment, or subjective cognitive decline) and a suspected etiology (Alzheimer disease [AD] or non-AD), with a confidence level ranging from 0% to 100%. In addition, the neurologist determined patient treatment in terms of ancillary investigations, medication, and care. Each patient received a clinical follow-up 1 year after being scanned. MAIN OUTCOMES AND MEASURES Primary outcome measures were post-PET changes in diagnosis, diagnostic confidence, and patient treatment. RESULTS Of the 507 patients (mean [SD] age, 65 (8) years; 201 women [39%]; mean [SD] Mini-Mental State Examination score, 25 [4]), 164 (32%) had AD dementia, 70 (14%) non-AD dementia, 114 (23%) mild cognitive impairment, and 159 (31%) subjective cognitive decline. Amyloid PET results were positive for 242 patients (48%). The suspected etiology changed for 125 patients (25%) after undergoing amyloid PET, more often due to a negative (82 of 265 [31%]) than a positive (43 of 242 [18%]) PET result (P < .01). Post-PET changes in suspected etiology occurred more frequently in patients older (>65 years) than younger (<65 years) than the typical age at onset of 65 years (74 of 257 [29%] vs 51 of 250 [20%]; P < .05). Mean diagnostic confidence (SD) increased from 80 (13) to 89 (13%) (P < .001). In 123 patients (24%), there was a change in patient treatment post-PET, mostly related to additional investigations and therapy. CONCLUSIONS AND RELEVANCE This prospective diagnostic study provides a bridge between validating amyloid PET in a research setting and implementing this diagnostic tool in daily clinical practice. Both amyloid-positive and amyloid-negative results had substantial associations with changes in diagnosis and treatment, both in patients with and without dementia.
ObjectiveTo apply the ATN scheme to memory clinic patients, to assess whether it discriminates patient populations with specific features.MethodsWe included 305 memory clinic patients (33% subjective cognitive decline [SCD]: 60 ± 9 years, 61% M; 19% mild cognitive impairment [MCI]: 68 ± 9 years, 68% M; 48% dementia: 66 ± 10 years, 58% M) classified for positivity (±) of amyloid (A) ([18F]Florbetaben PET), tau (T) (CSF p-tau), and neurodegeneration (N) (medial temporal lobe atrophy). We assessed ATN profiles' demographic, clinical, and cognitive features at baseline, and cognitive decline over time.ResultsThe proportion of A+T+N+ patients increased with syndrome severity (from 1% in SCD to 14% in MCI and 35% in dementia), while the opposite was true for A−T−N− (from 48% to 19% and 6%). Compared to A−T−N−, patients with the Alzheimer disease profiles (A+T+N− and A+T+N+) were older (both p < 0.05) and had a higher prevalence of APOE ε4 (both p < 0.05) and lower Mini-Mental State Examination (MMSE) (both p < 0.05), memory (both p < 0.05), and visuospatial abilities (both p < 0.05) at baseline. Non-Alzheimer profiles A−T−N+ and A-T+N+ showed more severe white matter hyperintensities (both p < 0.05) and worse language performance (both p < 0.05) than A−T−N−. A linear mixed model showed faster decline on MMSE over time in A+T+N− and A+T+N+ (p = 0.059 and p < 0.001 vs A−T−N−), attributable mainly to patients without dementia.ConclusionsThe ATN scheme identified different biomarker profiles with overlapping baseline features and patterns of cognitive decline. The large number of profiles, which may have different implications in patients with vs without dementia, poses a challenge to the application of the ATN scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.