The generation of primary aerosols from biomass hinders the production of biofuels by pyrolysis, intensifies the environmental impact of forest fires, and exacerbates the health implications associated with cigarette smoking. High speed photography is utilized to elucidate the ejection mechanism of aerosol particles from thermally decomposing cellulose at the timescale of milliseconds. Fluid modeling, based on first principles, and experimental measurement of the ejection phenomenon supports the proposed mechanism of interfacial gas bubble collapse forming a liquid jet which subsequently fragments to form ejected aerosol particles capable of transporting nonvolatile chemicals. Identification of the bubble-collapse/ejection mechanism of intermediate cellulose confirms the transportation of nonvolatile material to the gas phase and provides fundamental understanding for predicting the rate of aerosol generation.
Lithium ion batteries are used extensively in electronic devices as well as hybrid and electric vehicles. The anode electrode layer in the battery can be fabricated by coating an aqueous dispersion of carbon, binder, and additives, and then drying. During manufacturing, the distribution of the binder through the coating thickness can become nonuniform, which compromises the properties and performance of the battery. In this study, a quantitative method to analyze the binder distribution in the electrode during drying was established. A drying apparatus with an integrated analytic balance and surface-temperature measurement was used to prepare specimens. At specific time points during drying, specimens were removed from the apparatus, quickly frozen, and then freeze-dried. Raman spectroscopy was then used to measure the binder concentration at different points through the cross section of the freezedried electrode coating. Scanning electron microscopy was also used to explore the changing microstructure qualitatively. Using a model electrode formulation, the method demonstrated different binder distributions for electrodes dried at 150°C under airflow and room temperature, 20°C, with no airflow. The results also showed continued changes in distribution in the interior of the coating as drying continued.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.