Study of geochemistry, examination of isotope ages of detrital minerals, palaeomagnetic analysis, and a study of the trilobites were performed to provide constraints on the palaeogeographical position of the Holy Cross Mountains in Late Ediacaran–Early Palaeozoic time. The geochemical results indicate an active continental margin or continental island arc provenance of the Ediacaran sediments. Sediments from a passive continental margin were deposited here during the Cambrian and Ordovician. The palaeomagnetic pole isolated from Cambrian rocks of the Małopolska region of the Holy Cross Mountains corresponds to the Cambrian segment of the Baltic apparent polar wander path. Isotope age estimations indicate that Cambrian sediments of the Małopolska region contain detritus not only from a latest Neoproterozoic source but also from sources with ages of c . 0.8–0.9 Ga, 1.5 Ga and 1.8 Ga. The Małopolska, Brunosilesia, Dobrugea and Moesia terranes, which originally developed near the present southern edge of Baltica and were partly involved in the Cadomian orogen, were dextrally relocated along its Trans-European Suture Zone margin. The first stage of this movement took place as early as latest Ediacaran time, while Baltica rotated anticlockwise. Anticlockwise rotation of Baltica at the Cambrian–Ordovician boundary implies further dextral movement of the Małopolska block.
The oxygen isotope composition (δ18O) of marine sedimentary rocks has increased by 10 to 15 per mil since Archean time. Interpretation of this trend is hindered by the dual control of temperature and fluid δ18O on the rocks’ isotopic composition. A new δ18O record in marine iron oxides covering the past ~2000 million years shows a similar secular rise. Iron oxide precipitation experiments reveal a weakly temperature-dependent iron oxide–water oxygen isotope fractionation, suggesting that increasing seawater δ18O over time was the primary cause of the long-term rise in δ18O values of marine precipitates. The18O enrichment may have been driven by an increase in terrestrial sediment cover, a change in the proportion of high- and low-temperature crustal alteration, or a combination of these and other factors.
To understand probable infl uences of environmental changes on the decrease and rebound of biodiversity during the Late Ordovician, a detailed analysis of total organic carbon (TOC), pyrite, V/(V + Ni) ratios, and S isotopic compositions of pyrite in the Late Ordovician sediments from Poland was performed. The signifi cant enrichments of TOC and pyrite as well as high V/(V + Ni) ratios (>0.6) for the Jeleniów Formation of the latest Darriwilian to middle Katian Stages provide evidence for predominant anoxic bottom-water conditions. In contrast, low TOC and pyrite as well as low V/(V + Ni) ratios for the Wólka Formation of late Katian age indicate oxic depositional conditions. The S isotopic data are consistent with the interpretations of oceanic redox conditions based on multiple proxies for paleoredox. The results from the Baltica area reveal a major oceanic redox condition change during the late Katian and suggest that oceanic oxygenation may have contributed to the rebound of marine animal diversity during the Late Ordovician.
The stratigraphic variability and geochemistry of Llandovery/Wenlock (L/W) Series boundary sediments in Poland reveals that hemipelagic sedimentation under an anoxic/euxinic water column was interrupted by low-density bottom currents or detached diluted turbid layers that resulted in intermittent seafloor oxygenation. Total organic carbon values and inorganic proxies throughout the Wilków 1 borehole section suggest variable redox conditions. U/Mo ratios > 1 throughout much of the Aeronian and Telychian stages, together with an absence of pyrite framboids, suggest oxygenated conditions prevailed. However, elevated total organic carbon near the Aeronian/Telychian boundary, together with increased U/Th and V/(V + Ni) ratios and populations of small pyrite framboids are consistent with the development of dysoxic/anoxic conditions at that time. U/Th, V/Cr and V/(V + Ni) ratios, as well as Uauthig and Mo concentrations, suggest that during the Ireviken black shale deposition, bottom-water conditions deteriorated from oxic during Telychian time to mostly suboxic/anoxic immediately prior to the L/W boundary, before a brief reoxygenation at the end of the Ireviken black shale sedimentation in the Sheinwoodian Stage. Rapid fluctuations in U/Mo during the Ireviken Event are characteristic of fluctuating redox conditions that culminated in an anoxic/euxinic seafloor in Sheinwoodian time. Following Ireviken black shale deposition, conditions once again became oxygen deficient with the development of a euxinic zone in the water column. The Aeronian to Sheinwoodian deep-water redox history was unstable, and rapid fluctuations of the chemocline across the L/W Series boundary probably contributed to the Ireviken Event extinctions, which affected mainly pelagic and hemipelagic fauna.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.