Heat, oxidation and exposure to aldehydes create reactive carbonyl groups on proteins, targeting antigens to scavenger receptors. Formaldehyde is widely used in making vaccines, but has been associated with atypical enhanced disease during subsequent infection with paramyxoviruses. We show that carbonyl groups on formaldehyde-treated vaccine antigens boost T helper type 2 (T(H)2) responses and enhance respiratory syncytial virus (RSV) disease in mice, an effect partially reversible by chemical reduction of carbonyl groups.
Rationale: We attenuated virulent Bordetella pertussis by genetically eliminating or detoxifying three major toxins. This strain, named BPZE1, is being developed as a possible live nasal vaccine for the prevention of whooping cough. It is immunogenic and safe when given intranasally in adult volunteers.Objectives: Before testing in human infants, we wished to examine the potential effect of BPZE1 on a common pediatric infection (respiratory syncytial virus [RSV]) in a preclinical model.Methods: BPZE1 was administered before or after RSV administration in adult or neonatal mice. Pathogen replication, inflammation, immune cell recruitment, and cytokine responses were measured.Measurements and Main Results: BPZE1 alone did not cause overt disease, but induced efflux of neutrophils into the airway lumen and production of IL-10 and IL-17 by mucosal CD4 1 T cells. Given intranasally before RSV infection, BPZE1 markedly attenuated RSV, preventing weight loss, reducing viral load, and attenuating lung cell recruitment. Given neonatally, BPZE1 also protected against RSV-induced weight loss even through to adulthood. Furthermore, it markedly increased IL-17 production by CD4 1 T cells and natural killer cells and recruited regulatory cells and neutrophils after virus challenge. Administration of anti-IL-17 antibodies ablated the protective effect of BPZE1 on RSV disease.Conclusions: Rather than enhancing RSV disease, BPZE1 protected against viral infection, modified viral responses, and enhanced natural mucosal resistance. Prevention of RSV infection by BPZE1 seems in part to be caused by induction of IL-17. Clinical trial registered with www.clinicaltrials.gov (NCT 01188512).
Respiratory syncytial virus (RSV) causes bronchiolitis in young children and common colds in adults. There is no licensed vaccine, and prophylactic treatment with palivizumab is very expensive and limited to high-risk infants. Ribavirin is used as an antiviral treatment in infants and immunosuppressed patients, and its use is limited due to side-effects, toxicity to the recipient and staff, and evidence of marginal clinical efficacy. Therefore, we studied the in vivo kinetics, and the antiviral and protective properties of a novel candidate for RSV disease treatment.The drug is a small molecule (TMC353121) discovered by screening for fusion inhibitory properties against RSV in a cellular infection model. The pharmacokinetics of TMC353121 was studied in BALB/c mice and antiviral effects determined by testing viral loads in lung tissue by quantitative RT-PCR and plaque assay after intranasal RSV infection.At doses of 0.25-10 mg?kg -1 , TMC353121 significantly reduced viral load, bronchoalveolar lavage cell accumulation and the severity of lung histopathological change after infection. Treatment remained effective if started within 48 h of infection, but was ineffective thereafter. Therefore, TMC353121 is a novel potent antiviral drug, in vivo reducing RSV replication and inhibiting consequential lung inflammation, with a great potential for further clinical development.
Synthetic peptides mimicking a conformational B-cell epitope (M2) of the measles virus fusion protein (MVF) were used for the immunization of BALB/c mice and the anti-peptide and anti-virus antibody titers induced were compared. Of the panel of tested peptides, a chimeric peptide consisting of two copies of a T-helper epitope (residues 288-302 of MVF) and one copy of the mimotope M2 (TTM2) and a multiple antigen peptide with eight copies of M2 (MAP-M2) induced the highest titers of anti-M2 and anti-MV antibodies. Furthermore, peptides TTM2 and MAP-M2 induced antibodies with highest affinity for the mimotope and highest avidity for measles virus. Immunization with the MAP-M2 construct induced high titers of high-affinity anti-M2 antibody despite the absence of a T-helper epitope, and lymphocyte proliferation data suggest that the addition of M2 to the MAP resulted in the generation of a structure capable of stimulating T-cell help. Sera with anti-M2 reactivity were pooled according to affinity values for binding to M2, and high- and low-affinity pools were tested for their ability to prevent MV-induced encephalitis in a mouse model. The high-affinity serum pool conferred protection in 100% of mice, whereas the lower affinity pool conferred protection to only 50% of animals. These results indicate the potential of mimotopes for use as synthetic peptide immunogens and highlight the importance of designing vaccines to induce antibodies of high affinity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.