Abstract. The insulin-like growth factor (IGF)-1 gene consists of 6 exons resulting in the expression of 6 variant forms of mRNA (IA, IB, IC, IIA, IIB and IIC) due to an alternative splicing. The mechanisms of IGF-1 gene splicing and the role of local expression manifested by IGF-1 mRNA variants in colorectal carcinoma (CRC) have not been extensively investigated. Therefore, the aim of our study was to analyse the expression of IGF-1 mRNA isoforms [A, B, C, P1 (class I) and P2 (class II)], as well as the protein expression in CRC and control samples isolated from 28 patients. The expression of Ki-67 was also analysed and clinical data were obtained. For this purpose, we used quantitative real-time PCR (qPCR) and immunocytochemistry. The expression of mRNAs coding for all splicing isoforms of IGF-1 was observed in every tissue sample studied, with a significantly lower expression noted in the CRC as compared to the control samples. The cytoplasmic expression of IGF-1 protein was found in 50% of the CRC and in ~40% of the non-tumor tissues; however, no significant quantitative inter-group differences were observed. The expression of the IGF-1 gene in the 2 groups of tissues was controlled by the P1 and P2 promoters in a similar manner. No significant differences were detected in the expression of the IGF-1 A and B isoforms; however, their expression was significantly higher compared to that of isoform C. No significant differences were observed between the expression of Ki-67 mRNA in the CRC and control tissue even though the expression of the Ki-67 protein was higher in the CRC compared to the control samples. Ki-67 protein expression was associated with the macroscopic and microscopic aspects of CRC. A significant positive correlation was found between the local production of total mRNA and isoform A and the expression of Ki-67 mRNA, although only in the non-tumor tissues. In CRC samples, the local expression of the total IGF-1 mRNA and all splicing isoforms of IGF-1 mRNA decreased as compared to the normal colon tissues, although however, with conservation of both gene promoter activities and with the continued principal splicing IGF-1 mRNA isoforms.
IntroductionThe role of Wnt/ β -catenin signaling pathway in HCV-associated hepatocellular carcinogenesis is still unknown.Material and methodsThis study aimed to perform quantitative analysis of immuno- and hybridocytochemical expression of β -catenin, E- and N-cadherins and HCV proteins (C, NS3, NS5A) in long-lasting (≥ 20 years) chronic hepatitis C (CH-C) (n = 54), hepatocellular carcinoma (HCC) (n = 61), and control liver samples (n = 8).ResultsTypical membranous expression of β -catenin in the control liver was higher than in the CH-C and HCC (p = 0.06). The mean β -catenin tissue expression in CH-C was similar to controls, and significantly higher than that of HCC (p = 0.005). E-cadherin expression was lower in CH-C than in the control (p = 0.045) and HCC (p < 0.001). In HCC both β -catenin and E-cadherin expressions were significantly lower in comparison to controls (p = 0.02, p = 0.001, respectively). Positive correlations were found between β -catenin and E-cadherin (in CH-C and HCC), β -catenin and N-cadherin (HCC), E- and N-cadherins expressions (HCC) (p < 0.05 in all cases). In CH-C the positive correlation was demonstrated between NS5A protein and β -catenin, and between the all HCV proteins (C, NS3, NS5A) and E-cadherin expression (p < 0.05 in all cases).ConclusionsAlterations in cellular locations of β -catenin and E-cadherin in CH-C and HCC pointed to structural disturbances in intercellular junctions in the livers and presence of the transcriptionally inactive form of β -catenin. The reduced expression of E-cadherin in long-lasting CH-C may represent an early indicator of the epithelial-mesenchymal transition. The most important role in modulation of the Wnt/ β -catenin pathway in vivo is probably played by the NS5A viral protein.
Background:Several studies have shown increased serum levels of proinflammatory cytokines (Folia Morphol 2015; 74, 1: 65-72)
Differences in quantitative expression of IGF-1 mRNA isoforms in HCV-infected livers, as compared to the control, suggest that HCV may induce alteration of IGF-1 splicing profile.
Aim of the studySeveral epidemiological studies have attempted to demonstrate a relationship between increased serum level of insulin-like growth factor 1 (IGF-1) and an augmented risk of developing colorectal cancers (CRC).The human IGF-1 gene is composed of 6 exons and demonstrated expression of 6 different splice variants (isoforms) of mRNA (IA, IB, IC, IIA, IIB and IIC).The aim of the study was to evaluate the expression of different isoforms of IGF-1 mRNA in CRC and normal colon tissue.Material and methods13 paired tissue specimens (colorectal tumor and non-tumor tissues) were analyzed using both quantitative polymerase chain reaction (PCR) and immunocytochemistry methods (IHC). The expression of classes I and II and variants A, B, C of IGF-1 mRNA were measured.ResultsIn CRC higher amounts of IGF-1 class II mRNA than class I mRNA were detected. Among A, B, C isoforms, A variant of IGF-1 mRNA prevailed. The amounts of IGF-1 class I and class II mRNAs and of IGF-1 variant B mRNA were lowered in CRC as compared to the control. In CRC significant correlations were detected between reciprocal expression of class I and class II as well as between I and II isoforms and A, B and C.ConclusionsExpression of IGF-1 mRNA isoforms differs between normal and CRC tissues. Even if all isoforms of IGF-1 mRNA manifested correlations with each other in tissues of CRC, expression of all transcripts (except that of isoform A) was significantly decreased as compared to the control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.