Increasing concentrations of greenhouse gases in the atmosphere are expected to modify the global water cycle with significant consequences for terrestrial hydrology. We assess the impact of climate change on hydrological droughts in a multimodel experiment including seven global impact models (GIMs) driven by biascorrected climate from five global climate models under four representative concentration pathways (RCPs). Drought severity is defined as the fraction of land under drought conditions. Results show a likely increase in the global severity of hydrological drought at the end of the 21st century, with systematically greater increases for RCPs describing stronger radiative forcings. Under RCP8.5, droughts exceeding 40% of analyzed land area are projected by nearly half of the simulations. This increase in drought severity has a strong signal-to-noise ratio at the global scale, and Southern Europe, the Middle East, the Southeast United States, Chile, and South West Australia are identified as possible hotspots for future water security issues. The uncertainty due to GIMs is greater than that from global climate models, particularly if including a GIM that accounts for the dynamic response of plants to CO 2 and climate, as this model simulates little or no increase in drought frequency. Our study demonstrates that different representations of terrestrial water-cycle processes in GIMs are responsible for a much larger uncertainty in the response of hydrological drought to climate change than previously thought. When assessing the impact of climate change on hydrology, it is therefore critical to consider a diverse range of GIMs to better capture the uncertainty.climate impact | global hydrology | evaporation | global warming T he global water cycle is expected to change over the 21st century due to the combined effects of climate change and increasing human intervention. In a warmer world, the waterholding capacity of the atmosphere will increase, resulting in a change in the frequency of precipitation extremes, increased evaporation and dry periods (1), and intensification of droughts (2). This process is represented by most global climate models (GCMs) by increased summer dryness and winter wetness over large areas of continental mid to high latitudes in the Northern Hemisphere (3), associated with a reduction in water availability at continental (4, 5) and global scales (6, 7). Because such changes have potentially very serious implications in some regions of the world, identifying areas where there is agreement in the direction and magnitude of changes in drought characteristics (hotspots) in response to climate change is essential information for water resource management aimed at ensuring water security in a changing climate.Most GCMs, however, are not able to reproduce the fine-scale processes governing terrestrial hydrology (and hence runoff) and suffer from systematic biases (8). As land-atmospheric feedbacks are not yet fully understood and reproduced by global models (9), and because full coupling ...
Six land surface models and five global hydrological models participate in a model intercomparison project [Water Model Intercomparison Project (WaterMIP)], which for the first time compares simulation results of these different classes of models in a consistent way. In this paper, the simulation setup is described and aspects of the multimodel global terrestrial water balance are presented. All models were run at 0.58 spatial resolution for the global land areas for a 15-yr period (1985-99) using a newly developed global meteorological dataset. Simulated global terrestrial evapotranspiration, excluding Greenland and Antarctica, ranges from 415 to 586 mm yr 21 (from 60 000 to 85 000 km 3 yr 21 ), and simulated runoff ranges from 290 to 457 mm yr 21 (from 42 000 to 66 000 km 3 yr 21 ). Both the mean and median runoff fractions for the land surface models are lower than those of the global hydrological models, although the range is wider. Significant simulation differences between land surface and global hydrological models are found to be caused by the snow scheme employed. The physically based energy balance approach used by land surface models generally results in lower snow water equivalent values than the conceptual degreeday approach used by global hydrological models. Some differences in simulated runoff and evapotranspiration are explained by model parameterizations, although the processes included and parameterizations used are not distinct to either land surface models or global hydrological models. The results show that differences between models are a major source of uncertainty. Climate change impact studies thus need to use not only multiple climate models but also some other measure of uncertainty (e.g., multiple impact models).
The impacts of global climate change on different aspects of humanity's diverse life-support systems are complex and often difficult to predict. To facilitate policy decisions on mitigation and adaptation strategies, it is necessary to understand, quantify, and synthesize these climate-change impacts, taking into account their uncertainties. Crucial to these decisions is an understanding of how impacts in different sectors overlap, as overlapping impacts increase exposure, lead to interactions of impacts, and are likely to raise adaptation pressure. As a first step we develop herein a framework to study coinciding impacts and identify regional exposure hotspots. This framework can then be used as a starting point for regional case studies on vulnerability and multifaceted adaptation strategies. We consider impacts related to water, agriculture, ecosystems, and malaria at different levels of global warming. Multisectoral overlap starts to be seen robustly at a mean global warming of 3°C above the 1980-2010 mean, with 11% of the world population subject to severe impacts in at least two of the four impact sectors at 4°C. Despite these general conclusions, we find that uncertainty arising from the impact models is considerable, and larger than that from the climate models. In a low probability-high impact worst-case assessment, almost the whole inhabited world is at risk for multisectoral pressures. Hence, there is a pressing need for an increased research effort to develop a more comprehensive understanding of impacts, as well as for the development of policy measures under existing uncertainty.coinciding pressures | differential climate impacts | ISI-MIP
Water scarcity threatens people in various regions, and has predominantly been studied from a water quantity perspective only. Here we show that global water scarcity is driven by both water quantity and water quality issues, and quantify expansions in clean water technologies (i.e. desalination and treated wastewater reuse) to ‘reduce the number of people suffering from water scarcity’ as urgently required by UN’s Sustainable Development Goal 6. Including water quality (i.e. water temperature, salinity, organic pollution and nutrients) contributes to an increase in percentage of world’s population currently suffering from severe water scarcity from an annual average of 30% (22%–35% monthly range; water quantity only) to 40% (31%–46%; both water quantity and quality). Water quality impacts are in particular high in severe water scarcity regions, such as in eastern China and India. In these regions, excessive sectoral water withdrawals do not only contribute to water scarcity from a water quantity perspective, but polluted return flows degrade water quality, exacerbating water scarcity. We show that expanding desalination (from 2.9 to 13.6 billion m3 month−1) and treated wastewater uses (from 1.6 to 4.0 billion m3 month−1) can strongly reduce water scarcity levels and the number of people affected, especially in Asia, although the side effects (e.g. brine, energy demand, economic costs) must be considered. The presented results have potential for follow-up integrated analyses accounting for technical and economic constraints of expanding desalination and treated wastewater reuse across the world.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.