Haematopoietic stem cells (HSCs), responsible for blood production in the adult mouse, are first detected in the dorsal aorta starting at embryonic day 10.5 (E10.5). Immunohistological analysis of fixed embryo sections has revealed the presence of haematopoietic cell clusters attached to the aortic endothelium where HSCs might localize. The origin of HSCs has long been controversial and several candidates of the direct HSC precursors have been proposed (for review see ref. 7), including a specialized endothelial cell population with a haemogenic potential. Such cells have been described both in vitro in the embryonic stem cell (ESC) culture system and retrospectively in vivo by endothelial lineage tracing and conditional deletion experiments. Whether the transition from haemogenic endothelium to HSC actually occurs in the mouse embryonic aorta is still unclear and requires direct and real-time in vivo observation. To address this issue we used time-lapse confocal imaging and a new dissection procedure to visualize the deeply located aorta. Here we show the dynamic de novo emergence of phenotypically defined HSCs (Sca1(+), c-kit(+), CD41(+)) directly from ventral aortic haemogenic endothelial cells.
CLIP-170 is a microtubule "plus-end-tracking protein" implicated in the control of microtubule dynamics, dynactin localization, and the linking of endosomes to microtubules. To investigate the function of mouse CLIP-170, we generated CLIP-170 knockout and GFP-CLIP-170 knock-in alleles. Residual CLIP-170 is detected in lungs and embryos of homozygous CLIP-170 knockout mice, but not in other tissues and cell types, indicating that we have generated a hypomorphic mutant. Homozygous CLIP-170 knockout mice are viable and appear normal. However, male knockout mice are subfertile and produce sperm with abnormal heads. Using the knock-in mice, we followed GFP-CLIP-170 expression and behavior in dissected, live testis tubules. We detect plus-end-tracking GFP-CLIP-170 in spermatogonia. As spermatogenesis proceeds, GFP-CLIP-170 expression increases and the fusion protein strongly marks syncytia of differentiated spermatogonia and early prophase spermatocytes. Subsequently GFP-CLIP-170 levels drop, but during spermiogenesis (post-meiotic development), GFP-CLIP-170 accumulates again and is present on spermatid manchettes and centrosomes. Bleaching studies show that, as spermatogenesis progresses, GFP-CLIP-170 converts from a mobile plus-end-tracking protein to a relatively immobile protein. We propose that CLIP-170 has a structural function in the male germline, in particular in spermatid differentiation and sperm head shaping.[Keywords: Microtubules; plus-end-tracking proteins; CLIP-170; spermatogenesis; spermatid manchette] Supplemental material is available at http://www.genesdev.org.
Objective: To establish which meiotic checkpoints are activated in males with severe spermatogenic impairment to improve phenotypic characterization of meiotic defects. Design: Retrospective observational study. Setting: University medical center research laboratory and andrology clinic. Patient(s): Forty-eight patients with confirmed spermatogenic impairment (Johnsen scores 3-6) and 15 controls (Johnsen score 10). Intervention(s): None. Main Outcome Measure(s): Quantitative assessment of immunofluorescent analyses of specific markers to determine meiotic entry, chromosome pairing, progression of DNA double-strand break repair, crossover formation, formation of meiotic metaphases, metaphase arrest, and spermatid formation, resulting in a novel classification of human meiotic arrest types. Result(s): Complete metaphase arrest was observed most frequently (27%), and the patients with the highest frequency of apoptotic metaphases also displayed a reduction in crossover number. Incomplete metaphase arrest was observed in 17% of the patients. Only four patients (8%) displayed a failure to complete meiotic chromosome pairing leading to pachytene arrest. Two new types of meiotic arrest were defined: premetaphase and postmetaphase arrest (15% and 13%, respectively). Conclusion(s):Meiotic arrest in men occurs most frequently at meiotic metaphase. This arrest can be incomplete, resulting in low numbers of spermatids, and often occurs in association with reduced crossover frequency. The phenotyping approach described here provides mechanistic insights to help identify candidate infertility genes and to assess genotype-phenotype correlations in individual cases. (Fertil Steril Ò 2019;112:1059-70. Ó2019 by American Society for Reproductive Medicine.) El resumen está disponible en Español al final del artículo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.