Increasing production and application of nanomaterials raises significant questions regarding the potential for cellular entry and toxicity of nanoparticles. It was observed that the presence of serum reduces the cellular association of 20 nm carboxylate-modified fluorescent polystyrene beads up to 20-fold, relative to cells incubated in serum-free media. Analysis by confocal microscopy demonstrated that the presence of serum greatly reduces the cell surface association of nanoparticles, as well as the potential for internalization. However, both in the presence and absence of serum, nanoparticle entry depends upon clathrin-mediated endocytosis.Finally, experiments performed with cells cooled to 4°C suggest that a proportion of the accumulation of nanoparticles in cells was likely due to direct permeabilization of the plasma membrane.
When bacterial cells come in contact, antagonism mediated by the delivery of toxins frequently ensues. The potential for such encounters to have long-term beneficial consequences in recipient cells has not been investigated. Here we examined the effects of intoxication by DddA, a cytosine deaminase delivered via the type VI secretion system (T6SS) of Burkholderia cenocepacia. Despite its killing potential, we observed that several bacterial species resist DddA and instead accumulate mutations installed by the toxin, indicating that even in the absence of killing, interbacterial toxins can have profound consequences on target populations. Investigation of additional toxins from the deaminase superfamily revealed that mutagenic activity is a common feature of these proteins, including a representative we show targets single-stranded DNA and displays a markedly divergent structure. Our findings suggest that a surprising consequence of antagonistic interactions between bacteria could be the promotion of adaptation via the action of directly mutagenic toxins.
Very stable, high quality electron beams (current ~ 10 kA, energy spread < 1%, emittance ~ 1π mm mrad) have been generated in a laser-plasma accelerator driven by 25 TW femtosecond laser pulses.
The cardiotonic agent 4-ethyl-1,3-dihydro-5-4-(2-methyl-1H-imidazol-1-yl)benzoyl]-2H- imidazol-2-one (1) was found to have low bioavailability when administered orally to rats and dogs. A series of N-acyl derivatives, an underutilized prodrug of acidic NH compounds, has been synthesized and tested for their ability to improve the oral bioavailability of 1. Reaction of the monosodium salt of 1 with various anhydrides afforded the N-1 monoacylimidazolones with surprisingly high regioselectivity. In addition to the prodrugs, acylation of 1 with propionic or phenylacetic anhydride led to the novel 3H-pyrrolo[1,2-c]imidazole-3,5(2H)-diones 6. The prodrugs showed a significant increase in the partition coefficients with a minor decrease in the aqueous solubility. The benzoyl derivative 4b exhibited the highest stability in both pH 1.5 and 7.4 buffer solutions. Further evaluation of 4b showed rapid conversion to 1 in canine plasma (t1/2 = 38 min), and human plasma (t1/2 = 10 min). Oral studies indicated that the bioavailability of 4b was increased to greater than 75% (compared to less than 20% for 1), and hemodynamic studies demonstrated that the selective inotropic profile of 1 was retained.
Atrial fibrillation (AF) and flutter are common following cardiac surgery, increasing costs and morbidity. Cardiologists need a method to discern those patients who are at high risk for this arrhythmia in order to attempt to treat them by either pharmacologic or non-pharmacologic means. We performed a retrospective analysis of 377 CABG patients, of which 94 developed AF post-operatively. Feature selection and AF occurrence prediction was performed using a multivariate regression model, and two rough set derived rule classifiers. The rough set derived feature subset performed best with an accuracy of 87%, a sensitivity of 58.5%, and a specificity of 96.5%. This shows the importance of testing feature subsets, thereby discouraging the practice of simply combining the best individual predictors. The utility of rough set theory in prediction of cardiac arrhythmia is also validated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.