Most tropical fruit flies only lay into mature fruit, but a small number can also oviposit into unripe fruit. Little is known about the link between adult oviposition preference and offspring performance in such situations. In this study, we examine the influence of different ripening stages of two mango, Mangifera indica L. (Anacardiaceae), varieties on the preference and performance of the Oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), a fly known to be able to develop in unripe fruit. A series of laboratory‐based choice and no‐choice oviposition experiments and larval growth trials were carried out. The results demonstrated a general preference by B. dorsalis for mango variety Oakrong over variety Namdorkmai, but in most cases the single largest dependent variable influencing results was fruit ripening stage. Ripe and fully‐ripe mangoes were most preferred for oviposition by B. dorsalis. In contrast, unripe mango was infrequently used by ovipositing females, particularly in choice trials. Consistent with the results of oviposition preference, ripe and fully‐ripe mangoes were also best for offspring survival, with a higher percentage of larval survival to pupation and shorter development times in comparison to unripe mango. Changes in total soluble solids and pericarp toughness correlated with changing host use across the ripening stages. Regardless of the mango variety or ripeness stage, B. dorsalis had difficulty penetrating the pericarp of all fruits offered in experiments. Larval survival was also often poor in all experiments. We discuss the possibility that there may be differences in the ability of laboratory and wild flies to penetrate fruit for oviposition, or that in the field flies more regularly utilize natural fruit wounds as oviposition sites.
For fruit flies, fully ripe fruit is preferred for adult oviposition and is superior for offspring performance over unripe or ripening fruit. Because not all parts of a single fruit ripen simultaneously, the opportunity exists for adult fruit flies to selectively choose riper parts of a fruit for oviposition and such selection, if it occurs, could positively influence offspring performance. Such fine scale host variation is rarely considered in fruit fly ecology, however, especially for polyphagous species which are, by definition, considered to be generalist host users. Here we study the adult oviposition preference/larval performance relationship of the Oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), a highly polyphagous pest species, at the ''within-fruit'' level to see if such a host use pattern occurs. We recorded the number of oviposition attempts that female flies made into three fruit portions (top, middle and bottom), and larval behavior and development within different fruit portions for ripening (color change) and fully-ripe mango, Mangifera indica L. (Anacardiaceae). Results indicate that female B. dorsalis do not oviposit uniformly across a mango fruit, but lay most often in the top (i.e., stalk end) of fruit and least in the bottom portion, regardless of ripening stage. There was no evidence of larval feeding site preference or performance (development time, pupal weight, percent pupation) being influenced by fruit portion, within or across the fruit ripening stages. There was, however, a very significant effect on adult emergence rate from pupae, with adult emergence rate from pupae from the bottom of ripening mango being approximately only 50% of the adult emergence rate from the top of ripening fruit, or from both the top and bottom of fully-ripe fruit. Differences in mechanical (firmness) and chemical (total soluble solids, titratable acidity, total nonstructural carbohydrates) traits between different fruit portions were correlated with adult fruit utilisation. Our results support a positive adult preference/offspring performance relationship at within-fruit level for B. dorsalis. The fine level of host discrimination exhibited by B. dorsalis is at odds with the general perception that, as a polyphagous herbivore, the fly should show very little discrimination in its host use behavior.
Host preference of Bactrocera latifrons (Hendel) (Diptera: Tephritidae), major chili and nightshade pest, was studied using seven host plant species of family Solanaceae. Two nightshade species, eggplant, Solanum melongena L. and turkey berry, Solanum torvum Sw.; three pepper and one large chili cultivar of Capsicum annum L., banana pepper, cayenne pepper, noom pepper and duey kai chili; and one small chili cultivar of Capsicum frutescens L., bird chili, were used as tested host plants of B. latifrons for a series of choice test and no-choice test under the laboratory. Results revealed that B. latifrons preferred Capsicum fruits for oviposition rather than Solanum fruits. Bird chili and banana pepper were the most preferred host for B. latifrons, with the highest number of pupae per gram of fruit in no-choice and choice experiment, respectively. Although the best larval performance parameters of B. latifrons were better for eggplant than for other Solanaceous plants, fruit characteristics and total phenolic content in fruit play a major role for host preference of B. latifrons. Turkey berry was least preferred by B. latifrons, with the lowest number of pupae per fruit and it was not oviposited by B. latifrons female fly under the choice situation at all stages of ripeness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.