This study compared swarm-based algorithms in terms of their effectiveness in improving the design of facilities in container terminals (CTs). The design was conducted within the framework of stochastic discrete optimization and involved determining the number of equipment needed in CTs by considering variations in demand and the productivity of facilities-issues that are rarely elaborated in CT design. Variations were identified via Monte Carlo simulation characterized by a particular distribution. The conflicting issue due to increments in equipment investment that possibly cause the distribution delays was also modeled, specifically in relation to the increasing number of trucks used in terminals. Given that the optimization problem is typified by numerous combinations of actions, the swarm-based algorithms were deployed to develop a feasible solution. A new variant of glowworm swarm optimization (GSO) was then proposed and compared with particle swarm optimization (PSO) algorithms. The numerical results showed that the performance of the proposed GSO is superior to that of PSO algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.