Modeling and predicting human behavior is indispensable when industrial robots interacting with human operators are to be manipulated safely and efficiently. One challenge is that human operators tend to follow different motion patterns, depending on their intention and the structure of the environment. This precludes the use of classical estimation techniques based on kinematic or dynamic models, especially for the purpose of long-term prediction. In this paper, we propose a method based on Hidden Markov Models to predict the region of the workspace that is possibly occupied by the human within a prediction horizon. In contrast to predictions in the form of single points such as most likely human positions as obtained from previous approaches, the regions obtained here may serve as safety constraints when the robot motion is planned or optimized. This way one avoids collisions with a probability not less than a predefined threshold. The practicability of our method is demonstrated by successfully and accurately predicting the motion of a human arm in two scenarios involving multiple motion patterns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.