Space debris have become exceedingly dangerous over the years as the number of objects in orbit continues to increase. Active debris removal (ADR) missions have gained significant interest as effective means of mitigating the risk of collision between objects in space. This study focuses on developing a multi-ADR mission that utilizes controlled reentry and deorbiting. The mission comprises two spacecraft: a Servicer that brings debris to a low altitude and a Shepherd that rendezvous with the debris to later perform a controlled reentry. A preliminary mission design tool (PMDT) was developed to obtain time and fuel optimal trajectories for the proposed mission while considering the effect of J2, drag, eclipses, and duty cycle. The PMDT can perform such trajectory optimizations for multi-debris missions with computational time under a minute. Three guidance schemes are also studied, taking the PMDT solution as a reference to validate the design methodology and provide guidance solutions to this complex mission profile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.