Four titanium(IV) alkoxides, namely: Ti(IV) npropoxide (1), Ti(IV) n-butoxide (2), Ti(IV) tert-butoxide (3), and Ti(IV) 2-ethylhexoxide (4), have been used as initiators in the bulk ring-opening polymerization (ROP) of ε-caprolactone (ε-CL). The influence of the alkoxide group on the course of the ROP of ε-CL was investigated by means of 1 H-NMR and differential scanning calorimetry (DSC). The 1 H-NMR spectra confirmed that the ROP reaction of ε-CL proceeded via the widely accepted coordinationinsertion mechanism for each of the four initiators. Isoconversional methods have been used to evaluate non-isothermal DSC data via the equations of Friedman, Kissinger-AkahiraSunose (KAS) and Ozawa-Flynn-Wall (OFW). The kinetic studies showed that the polymerization rate for the four initiators (1-4) was in the order of 1>2≈4>3. The lowest activation energies (40-47, 42-44, and 49-52 kJ/mol for the Friedman, KAS and OFW methods respectively) were found in the polymerizations using Ti(IV) n-propoxide (1), while the highest activation energies (84-107, 77-87, and 80-91 kJ/mol for the Friedman, KAS and OFW methods respectively) were obtained using Ti(IV) tert-butoxide (3). Differences in the rates of polymerization and the activation energies amongst the four initiators appeared to be governed mainly by the different degrees of steric hindrance in the initiator structure. These results represent important findings regarding the steric influence of the alkoxide groups on the kinetics of the ROP of ε-CL initiated by titanium(IV) alkoxides.
Group 4 metallocene-mediated cationic ring-opening polymerizations of a series of lactones and cyclic carbonates, with different ring sizes ([Formula: see text]–8) have been theoretically studied. Using the “naked cation” approach in combination with density functional theory, the activated chain-end mechanism and the influence of transition metals, solvent and monomer ring size on the polymerizability were explored in detail. The results showed that the cationic metallocene–monomer complex, [catalyst][monomer][Formula: see text], is formed, generating cationic (carbocation ion) species responsible for polymer chain growth. We found that poor polymerizability of five-membered lactone and six-membered ring carbonate depends not only on the nature of the monomer ring size but also the relative stability of the complex, which was found to correlate well with the ring strain. Subsequently, several propagation steps take place through an SN2 reaction which involves ring opening of an active monomer, via alkyl–oxygen bond cleavage. Based on the computed activation energies of all metallocene systems, the first propagation was found to be the rate-determining step of the overall propagation and the hafnocene was found to be most active with the energy barrier of 17.6[Formula: see text]kcal/mol, followed by zirconocene (18.6[Formula: see text]kcal/mol) and titanocene (19.5[Formula: see text]kcal/mol), respectively. The mechanistic study may be applicable to the cationic ROP of lactides and other related monomers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.