The Koutras-McIntosh family of metrics include conformally flat pp-waves and the Wils metric. It appeared in a paper of 1996 by Koutras-McIntosh as an example of a pure radiation spacetime without scalar curvature invariants or infinitesimal symmetries. Here we demonstrate that these metrics have no "hidden symmetries", by which we mean Killing tensors of low degrees. For the particular case of Wils metrics we show the nonexistence of Killing tensors up to degree 6. The technique we use is the geometric theory of overdetermined PDEs and the Cartan prolongation-projection method. Application of those allows to prove the nonexistence of polynomial in momenta integrals for the equation of geodesics in a mathematical rigorous way. Using the same technique we can completely classify all lower degree Killing tensors and, in particular, prove that for generic pp-waves all Killing tensors of degree 3 and 4 are reducible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.