Many learning opportunities of mathematical reasoning in school encourage passive imitative learning procedures (algorithmic reasoning, AR) instead of engaging in more active constructive reasoning processes (e.g., creative mathematical reasoning, CMR). In the present study, we employed a within-subject mathematical intervention in the classroom with pupils in upper secondary schools followed by a test situation during brain imaging with fMRI one week later. We hypothesized that learning mathematical reasoning with the active (CMR) compared to the passive mode (AR) should lead to a CMR-effect, characterized by better performance and higher activity in brain regions related to semantic memory processing one week after learning. Despite controlling for individual differences in cognitive abilities, higher brain activity in key semantic brain regions such as left AG and left IFG was observed on tasks previously learnt with CMR compared to AR. Thus, encouraging pupils to engage in more active constructive processes when learning mathematical reasoning might have beneficial effects on learning and memory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.