Interaction with the world requires an organism to transform sensory signals into representations in which behaviorally meaningful properties of the environment are made explicit. These representations are derived through cascades of neuronal processing stages in which neurons at each stage recode the output of preceding stages. Explanations of sensory coding may thus involve understanding how low-level patterns are combined into more complex structures. To gain insight into such midlevel representations for sound, we designed a hierarchical generative model of natural sounds that learns combinations of spectrotemporal features from natural stimulus statistics. In the first layer, the model forms a sparse convolutional code of spectrograms using a dictionary of learned spectrotemporal kernels. To generalize from specific kernel activation patterns, the second layer encodes patterns of time-varying magnitude of multiple first-layer coefficients. When trained on corpora of speech and environmental sounds, some second-layer units learned to group similar spectrotemporal features. Others instantiate opponency between distinct sets of features. Such groupings might be instantiated by neurons in the auditory cortex, providing a hypothesis for midlevel neuronal computation.
Behavior relies on the ability of sensory systems to infer properties of the environment from incoming stimuli. The accuracy of inference depends on the fidelity with which behaviorally relevant properties of stimuli are encoded in neural responses. High-fidelity encodings can be metabolically costly, but low-fidelity encodings can cause errors in inference. Here, we discuss general principles that underlie the tradeoff between encoding cost and inference error. We then derive adaptive encoding schemes that dynamically navigate this tradeoff. These optimal encodings tend to increase the fidelity of the neural representation following a change in the stimulus distribution, and reduce fidelity for stimuli that originate from a known distribution. We predict dynamical signatures of such encoding schemes and demonstrate how known phenomena, such as burst coding and firing rate adaptation, can be understood as hallmarks of optimal coding for accurate inference.
BackgroundDespite their widespread use, the biological mechanisms underlying the efficacy of psychotropic drugs are still incompletely known; improved understanding of these is essential for development of novel more effective drugs and rational design of therapy. Given the large number of psychotropic drugs available and their differential pharmacological effects, it would be important to establish specific predictors of response to various classes of drugs.ResultsTo identify the molecular mechanisms that may initiate therapeutic effects, whole-genome expression profiling (using 324 Illumina Mouse WG-6 microarrays) of drug-induced alterations in the mouse brain was undertaken, with a focus on the time-course (1, 2, 4 and 8 h) of gene expression changes produced by eighteen major psychotropic drugs: antidepressants, antipsychotics, anxiolytics, psychostimulants and opioids. The resulting database is freely accessible at http://www.genes2mind.org. Bioinformatics approaches led to the identification of three main drug-responsive genomic networks and indicated neurobiological pathways that mediate the alterations in transcription. Each tested psychotropic drug was characterized by a unique gene network expression profile related to its neuropharmacological properties. Functional links that connect expression of the networks to the development of neuronal adaptations (MAPK signaling pathway), control of brain metabolism (adipocytokine pathway), and organization of cell projections (mTOR pathway) were found.ConclusionsThe comparison of gene expression alterations between various drugs opened a new means to classify the different psychoactive compounds and to predict their cellular targets; this is well exemplified in the case of tianeptine, an antidepressant with unknown mechanisms of action. This work represents the first proof-of-concept study of a molecular classification of psychoactive drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.