Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is a powerful surface characterization technique capable of producing high spatial resolution hyperspectral images, in which each pixel comprises an entire mass spectrum. Such images can provide insight into the chemical composition across a surface. However, issues arise due to the size and complexity of the data produced. Data are particularly complicated for biological samples, primarily due to overlapping spectra produced by similar components. The traditional approach of selecting individual ion peaks as representative of particular components is insufficient for such complex data sets. Multivariate analysis (MVA) can help to overcome this significant hurdle. We demonstrate that Kohonen self-organizing maps (SOMs) with a toroidal topology can be used to analyze a ToF-SIMS hyperspectral imaging data set and identify spectral similarities between pixels. We present a method for color-tagging the toroidal SOM output, which reduces the entire data set to a single RGB image in which similar pixelsbased on their associated mass spectraare assigned a similar color. This method was exemplified using a ToF-SIMS image of dried large multilamellar vesicles (LMVs), loaded with the antibiotic cefditoren pivoxil (CP). We successfully identified CP-loaded and empty LMVs without the need for any prior knowledge of the sample, despite their highly similar spectra. We also identified which specific ion peaks were most important in differentiating the two LMV populations. This approach is entirely unsupervised and requires minimal experimenter input. It was developed with the aim of providing a user-friendly yet sophisticated workflow for understanding complex biological samples using ToF-SIMS images.
We present an optimization of the toroidal self-organizing map (SOM) algorithm for the accurate visualization of hyperspectral data. This represents a significant advancement on our previous work, in which we demonstrated the use of toroidal SOMs for the visualization of time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging data. We have previously shown that the toroidal SOM can be used, unsupervised, to produce a multicolor similarity map of the analysis area, in which pixels with similar mass spectra are assigned a similar color. Here, we use an additional algorithm, relational perspective mapping (RPM), to produce more accurate visualizations of hyperspectral data. The SOM output is used as an input for the RPM algorithm, which is a nonlinear dimensionality reduction technique designed to produce a two-dimensional map of high-dimensional data. Using the topological information provided by the SOM, RPM provides complementary distance information. The result is a color scheme that more accurately reflects the local spectral distances between pixels in the data. We exemplify SOM-RPM using ToF-SIMS imaging data from a mouse tumor tissue section. The similarity maps produced are compared with those produced by two leading hyperspectral visualization techniques in the field of mass spectrometry imaging: t-distributed stochastic neighborhood embedding (t-SNE) and uniform manifold approximation and projection (UMAP). We evaluate the performance of each technique both qualitatively and quantitatively, investigating the correlations between distances in the models and distances in the data. SOM-RPM is demonstrably highly competitive with t-SNE and UMAP, according to our evaluations. Furthermore, the use of a neural network offers distinct advantages in data characterization, which we discuss. We also show how spectra extracted from regions of interest identified by SOM-RPM can be further analyzed using linear discriminant analysis for the validation and characterization of the surface chemistry.
Combinatorial approaches to materials discovery offer promising potential for the rapid development of novel polymer systems. Polymer microarrays enable the high-throughput correlation of physical and chemical properties, such as surface chemistry, with polymer functionality, such as cell or protein adsorption. A limitation to this approach is the ability to accurately discriminate between highly similar polymers or identify heterogeneities within each individual polymer spot. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) offers unique potential in this regard, capable of describing the chemistry associated with the outermost layer of a sample with high spatial resolution and chemical sensitivity. However, this comes at the cost of generating large scale, complex hyperspectral imaging data. We have demonstrated previously that machine learning is a powerful tool for interpreting ToF-SIMS images, describing a method for color-tagging the output of a self-organizing map (SOM). This reduces the entire hyperspectral data set to a single reconstructed color similarity map, in which the spectral similarity between pixels is represented by their color similarity. Here, we apply the same methodology to a ToF-SIMS image of a printed polymer microarray. We report complete, singlepixel molecular discrimination of the 70 unique polymer spots in the array, while also identifying intra-spot heterogeneities thought to be related to polymer orientation. In this way, we show that the SOM can identify layers of similarity and clusters in the data, both with respect to polymer backbone structures and their individual side groups. Finally, we relate the output of the SOM analysis with fluorescence data from polymer-protein adsorption studies, highlighting how polymer functionality can be visualized within the context of the global topology of the data set.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.