Commercially available antisera against five subtypes of muscarinic receptors and nine subtypes of adrenoceptors showed highly distinct immunohistochemical staining patterns in rat ureter and stomach. However, using the M(1-4) muscarinic receptor subtypes and alpha(2B)-, beta(2)-, and beta(3)-adrenoceptors as examples, Western blots with membranes prepared from cell lines stably expressing various subtypes of muscarinic receptors or adrenoceptors revealed that each of the antisera recognized a set of proteins that differed between the cell lines used but lacked specificity for the claimed target receptor. We propose that receptor antibodies need better validation before they can reliably be used.
The ideal antiserum for immunohistochemical (IHC) applications contains mono-specific high-affinity antibodies with little nonspecific adherence to sections. Many commercially available antibodies are “affinity” purified, but it is unknown if they meet “hard” specificity criteria, such as absence of staining in tissues genetically deficient for the antigen or a staining pattern that is identical to that of an antibody raised against a different epitope on the same protein. Reviewers, therefore, often require additional characterization. Although the affinity-purified antibodies used in our study on the distribution of muscarinic receptors produced selective staining patterns on sections, few passed the preabsorption test, and none produced bands of the anticipated size on Western blots. More importantly, none showed a difference in staining pattern on sections or Western blots between wild-type and knockout mice. Because these antibodies were used in most studies published thus far, our findings cast doubts on the validity of the extant body of morphological knowledge of the whole family of muscarinic receptors. We formulate requirements that antibody-specification data sheets should meet and propose that journals for which IHC is a core technique facilitate consumer rating of antibodies. “Certified” antibodies could avoid fruitless and costly validation assays and should become the standard of commercial suppliers.
Glutamine synthetase (GS) is a key enzyme in the "glutamine-glutamate cycle" between astrocytes and neurons, but its function in vivo was thus far tested only pharmacologically. Crossing GS(fl/lacZ) or GS(fl/fl) mice with hGFAP-Cre mice resulted in prenatal excision of the GS(fl) allele in astrocytes. "GS-KO/A" mice were born without malformations, did not suffer from seizures, had a suckling reflex, and did drink immediately after birth, but then gradually failed to feed and died on postnatal day 3. Artificial feeding relieved hypoglycemia and prolonged life, identifying starvation as the immediate cause of death. Neuronal morphology and brain energy levels did not differ from controls. Within control brains, amino acid concentrations varied in a coordinate way by postnatal day 2, implying an integrated metabolic network had developed. GS deficiency caused a 14-fold decline in cortical glutamine and a sevenfold decline in cortical alanine concentration, but the rising glutamate levels were unaffected and glycine was twofold increased. Only these amino acids were uncoupled from the metabolic network. Cortical ammonia levels increased only 1.6-fold, probably reflecting reduced glutaminolysis in neurons and detoxification of ammonia to glycine. These findings identify the dramatic decrease in (cortical) glutamine concentration as the primary cause of brain dysfunction in GS-KO/A mice. The temporal dissociation between GS(fl) elimination and death, and the reciprocal changes in the cortical concentration of glutamine and alanine in GS-deficient and control neonates indicate that the phenotype of GS deficiency in the brain emerges coincidentally with the neonatal activation of the glutamine-glutamate and the associated alanine-lactate cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.