LR is an isotonic solution that has no effect on CBF. Therefore it is probable that this solution is more appropriate than saline for nasal irrigation and nebulization or antral lavage. Moreover, the results of this study suggest that mucolytic effects induced by hyperosmolarity should be attained preferably with hypertonic saline 7% in patients with cystic fibrosis or asthma. At this concentration, the ciliostatic effect is reversible, whereas irreversible changes are to be expected at higher concentrations.
The present study demonstrates a significant similarity in the effects of NaCl and salbutamol on ciliary beat frequency in vitro and on mucociliary transport in vivo. The evidence from our experiments suggests that ciliary beat frequency is a determining factor in the mucociliary transport rate in the nose.
Even though deficits in olfactory function affect a considerable part of the population, the neuronal basis of olfactory deficits remains scarcely investigated. To achieve a better understanding of how smell loss affects neural activation patterns and functional networks, we set out to investigate patients with olfactory dysfunction using functional magnetic resonance imaging (fMRI) and olfactory stimulation. We used patients' scores on a standardized olfactory test as continuous measure of olfactory function. 48 patients (mean olfactory threshold discrimination identification (TDI) score = 16.33, SD = 6.4, range 6 - 28.5) were investigated. Overall, patients showed piriform cortex activation during odor stimulation compared to pure sniffing. Group independent component analysis indicated that the recruitment of three networks during odor stimulation was correlated with olfactory function: a sensory processing network (including regions such as insula, thalamus and piriform cortex), a cerebellar network and an occipital network. Interestingly, recruitment of these networks during pure sniffing was related to olfactory function as well. Our results support previous findings that sniffing alone can activate olfactory regions. Extending this, we found that the severity of olfactory deficits is related to the extent to which neural networks are recruited both during olfactory stimulation and pure sniffing. This indicates that olfactory deficits are not only reflected in changes in specific olfactory areas but also in the recruitment of occipital and cerebellar networks. These findings pave the way for future investigations on whether characteristics of these networks might be of use for the prediction of disease prognosis or of treatment success.
Background Prednisolone has been suggested as a treatment for olfactory disorders after COVID-19, but evidence is scarce. Hence, we aimed to determine the efficacy of a short oral prednisolone treatment on patients with persistent olfactory disorders after COVID-19. Methods We performed a randomized, double-blind, placebo-controlled, single-centered trial in the Netherlands. Patients were included if they were > 18 years old and if they had persistent (> 4 weeks) olfactory disorders within 12 weeks after a confirmed COVID-19 test. The treatment group received oral prednisolone 40 mg once daily for 10 days and the placebo group received matching placebo. In addition, all patients performed olfactory training. The primary outcome was the objective olfactory function on Sniffin’ Sticks Test (SST) 12 weeks after the start of treatment, measured in Threshold-Discrimination-Identification (TDI) score. Secondary outcomes were objective gustatory function assessed by the Taste Strip Test (TST) and subjective self-reported outcomes on questionnaires about olfactory, gustatory and trigeminal function, quality of life, and nasal symptoms. The CONSORT 2010 guideline was performed. Results Between November 2021 and February 2022, we included 115 eligible patients, randomly assigned to the treatment (n = 58) or placebo group (n = 57). No difference in olfactory function between groups was obtained after 12 weeks. Median TDI score on SST was 26.8 (IQR 23.6–29.3) in the placebo group and 28.8 (IQR 24.0–30.9) in the prednisolone group, with a median difference of 2.0 (95% CI 0.75 to 1.5). There was similar improvement on olfactory function in both groups after 12 weeks. Furthermore, on secondary outcomes, we obtained no differences between groups. Conclusions This trial shows that prednisolone does not improve olfactory function after COVID-19. Therefore, we recommend not prescribing prednisolone for patients with persistent olfactory disorders after COVID-19. Trial registration This trial is registered on the ISRCTN registry with trial ID ISRCTN70794078.
Olfactory loss (OL) affects up to 20% of the general population and is related to changes in olfaction-related brain regions. This study investigated the effect of etiology and duration of OL on gray matter volume (GMV) of these regions in 257 patients. Voxel-based morphometry was applied to measure GMV in brain regions of interest to test the effects of etiology and duration on regional GMV and the relation between olfactory function and regional GMV. Etiology of OL had a significant effect on GMV in clusters representing the gyrus rectus and orbitofrontal cortex (OFC), bilaterally. Patients with congenital anosmia had reduced GMV in the gyrus rectus and an increased OFC volume compared to patients with acquired OL. There was a significant association between volume of the left OFC and olfactory function. This implies that changes in GMV in patients with acquired OL are mainly reflected in the OFC and depend on olfactory function. Morphology of olfactory areas in the brain therefore seems to relate to olfactory function and the subsequent degree of exposure to olfactory input in patients with acquired OL. Differences in GMV in congenital anosmia are most likely due to the fact that patients were never able to smell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.