This study describes the psychometric similarities and differences in motor timing performance between 20 human subjects and three rhesus monkeys during two timing production tasks. These tasks involved tapping on a push-button to produce the same set of intervals (range of 450 to 1,000 ms), but they differed in the number of intervals produced (single vs. multiple) and the modality of the stimuli (auditory vs. visual) used to define the time intervals. The data showed that for both primate species, variability increased as a function of the length of the produced target interval across tasks, a result in accordance with the scalar property. Interestingly, the temporal performance of rhesus monkeys was equivalent to that of human subjects during both the production of single intervals and the tapping synchronization to a metronome. Overall, however, human subjects were more accurate than monkeys and showed less timing variability. This was especially true during the self-pacing phase of the multiple interval production task, a behavior that may be related to complex temporal cognition, such as speech and music execution. In addition, the wellknown human bias toward auditory as opposed to visual cues for the accurate execution of time intervals was not evident in rhesus monkeys. These findings validate the rhesus monkey as an appropriate model for the study of the neural basis of time production, but also suggest that the exquisite temporal abilities of humans, which peak in speech and music performance, are not all shared with macaques.
SummaryNon-human primate neuroimaging is a rapidly growing area of research that promises to transform and scale translational and cross-species comparative neuroscience. Unfortunately, the technological and methodological advances of the past two decades have outpaced the accrual of data, which is particularly challenging given the relatively few centers that have the necessary facilities and capabilities. The PRIMatE Data Exchange (PRIME-DE) addresses this challenge by aggregating independently acquired non-human primate magnetic resonance imaging (MRI) datasets and openly sharing them via the International Neuroimaging Data-sharing Initiative (INDI). Here, we present the rationale, design, and procedures for the PRIME-DE consortium, as well as the initial release, consisting of 25 independent data collections aggregated across 22 sites (total = 217 non-human primates). We also outline the unique pitfalls and challenges that should be considered in the analysis of non-human primate MRI datasets, including providing automated quality assessment of the contributed datasets.
The precise quantification of time during motor performance is critical for many complex behaviors, including musical execution, speech articulation, and sports; however, its neural mechanisms are primarily unknown. We found that neurons in the medial premotor cortex (MPC) of behaving monkeys are tuned to the duration of produced intervals during rhythmic tapping tasks. Interval-tuned neurons showed similar preferred intervals across tapping behaviors that varied in the number of produced intervals and the modality used to drive temporal processing. In addition, we found that the same population of neurons is able to multiplex the ordinal structure of a sequence of rhythmic movements and a wide range of durations in the range of hundreds of milliseconds. Our results also revealed a possible gain mechanism for encoding the total number of intervals in a sequence of temporalized movements, where intervaltuned cells show a multiplicative effect of their activity for longer sequences of intervals. These data suggest that MPC is part of a core timing network that uses interval tuning as a signal to represent temporal processing in a variety of behavioral contexts where time is explicitly quantified.
Merchant H, Zarco W, Prado L. Do we have a common mechanism for measuring time in the hundreds of millisecond range? Evidence from multiple-interval timing tasks. J Neurophysiol 99: 939 -949, 2008. First published December 19, 2007 doi:10.1152/jn.01225.2007. In the present study we examined the performance variability of a group of 13 subjects in eight different tasks that involved the processing of temporal intervals in the subsecond range. These tasks differed in their sensorimotor processing (S; perception vs. production), the modality of the stimuli used to define the intervals (M; auditory vs. visual), and the number of intervals (N; one or four). Different analytical techniques were used to determine the existence of a central or distributed timing mechanism across tasks. The results showed a linear increase in performance variability as a function of the interval duration in all tasks. However, this compliance of the scalar property of interval timing was accompanied by a strong effect of S, N, and M and the interaction between these variables on the subjects' temporal accuracy. Thus the performance variability was larger not only in perceptual tasks than that in motor-timing tasks, but also using visual rather than auditory stimuli, and decreased as a function of the number of intervals. These results suggest the existence of a partially overlapping distributed mechanism underlying the ability to quantify time in different contexts. I N T R O D U C T I O NOrganisms have developed different mechanisms to quantify time over a wide range of durations, from microseconds to daily circadian rhythms. It has been suggested that in the middle of these extremes there is a timing mechanism devoted to the hundreds of millisecond scale (Harrington and Haaland 1999;Hazeltine et al. 1997), which is the range of durations used in the present study. Interval timing in this range is a prerequisite in several behaviors, including the perception and production of speech, music, and dance, as well as the performance of sports and estimation of the time that remains before the occurrence of an important event, such as estimating time to contact (Merchant and Georgopoulos 2006). Different sources of information support the hypothesis of a common timing mechanism in hundreds of milliseconds. First, several psychological studies have shown that the temporal performance follows the scalar property, which defines a linear relationship between the variability of temporal performance and interval duration, in conformity with Weber's law (Matell and Meck 2000). Thus Weber's law is given as SD(T) ϭ kT, where k is a constant corresponding to the Weber fraction. In this sense, the coefficients of variation (/) or the Weber fractions show similar values in a variety of tasks and species, suggesting a dedicated temporal mechanism in this time range (Gibbon et al. 1997). For example, in a human discrimination task of time intervals, Getty (1975) described a constant Weber fraction for intervals between 200 and 2,000 ms. Now, another conce...
Temporal information processing is critical for many complex behaviors including speech and music cognition, yet its neural substrate remains elusive. We examined the neurophysiological properties of medial premotor cortex (MPC) of two Rhesus monkeys during the execution of a synchronization-continuation tapping task that includes the basic sensorimotor components of a variety of rhythmic behaviors. We show that time-keeping in the MPC is governed by separate cell populations. One group encoded the time remaining for an action, showing activity whose duration changed as a function of interval duration, reaching a peak at similar magnitudes and times with respect to the movement. The other cell group showed a response that increased in duration or magnitude as a function of the elapsed time from the last movement. Hence, the sensorimotor loops engaged during the task may depend on the cyclic interplay between different neuronal chronometers that quantify the time passed and the remaining time for an action.medial premotor area | timing neurophysiology | supplementary motor area I nterval timing in the milliseconds is a prerequisite for many complex behaviors, such as the perception and production of speech (1), the execution and appreciation of music and dance (2, 3), and the performance of a large variety of sports (4). Time in music comes in a variety of patterns, which include isochronous sequences where temporal intervals are of a single constant duration or, more commonly, sequences containing intervals of many durations. In addition, the ability to capture and interpret the beats in a rhythmic pattern allows people to move and dance in time to music (3). Music and dance, then, are behaviors that depend on intricate loops of perception and action, where temporal processing can be involved during the synchronization of movements with sensory information or during the internal generation of movement sequences (2). In a simplified version of these activities, numerous studies have examined how subjects synchronize taps with pacing isochronous auditory stimuli and then continue tapping at the instructed rate without the advantage of the sensory metronome (5). Thus, the cyclic nature of the synchronizationcontinuation task (SCT) implies that subjects must keep track of the time elapsed since the previous sensorimotor events as well as the time remaining until the next events.Functional imaging studies have shown that the basal ganglia, the medial premotor cortex (MPC, pre-and supplementary motor areas), the prefrontal and posterior parietal cortex, and the cerebellum are the main nodes of a timing network that is engaged during different time production and perception tasks, including the SCT (6, 7). These studies suggest the existence of a partially overlapping distributed system for the temporal information processing in a variety of sensorimotor contexts that reach a complexity peak during musical cognition and speech, but that also include the production and estimation of single intervals (2,8).Neurophysiolog...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.