An unidentified agent was cultured in primary monkey cells at the Los Angeles County Public HealthDepartment from each of five stool specimens submitted from an outbreak of gastroenteritis. Electron microscopy and an adenovirus-specific monoclonal antibody confirmed this agent to be an adenovirus. Since viral titers were too low, complete serotyping was not possible. Using the DNase-sequence-independent viral nucleic acid amplification method, we identified several nucleotide sequences with a high homology to human adenovirus 41 (HAdV-41) and simian adenovirus 1 (SAdV-1). However, using anti-SAdV-1 sera, it was determined that this virus was serologically different than SAdV-1. Genomic sequencing and phylogenetic analysis confirmed that this new adenovirus was so divergent from the known human adenoviruses that it was not only a new type but also represented a new species (human adenovirus G). In a retrospective clinical study, this new virus was detected by PCR in one additional patient from a separate gastroenteritis outbreak. This study suggests that HAdV-52 may be one of many agents causing gastroenteritis of unknown etiology.
e Apophysomyces variabilis is an emerging fungal pathogen that can cause significant infections in immunocompetent patients. We report a case of A. variabilis invasive wound infection in a 21-year-old male after a self-inflicted burn injury.
CASE REPORT
Baculovirus P35 is a universal suppressor of apoptosis that stoichiometrically inhibits cellular caspases in a novel cleavage-dependent mechanism. Upon caspase cleavage at Asp-87, the 10-and 25-kDa cleavage products of P35 remain tightly associated with the inhibited caspase. Mutations in the ␣-helix of the reactive site loop preceding the cleavage site abrogate caspase inhibition and antiapoptotic activity. Substitution of Pro for Val-71, which is located in the middle of this ␣-helix, produces a protein that is cleaved at the requisite Asp-87 but does not remain bound to the caspase. This loss-offunction mutation provided the opportunity to structurally analyze the conformational changes of the P35 reactive site loop after caspase cleavage. We report here the 2.7 Å resolution crystal structure of V71P-mutated P35 after cleavage by human caspase-3. The structure reveals a large movement in the carboxyl-terminal side of the reactive site loop that swings down and forms a new -strand that augments an existing -sheet. Additionally, the hydrophobic amino terminus releases and extends away from the protein core. Similar movements occur when P35 forms an inhibitory complex with human caspase-8. These findings suggest that the ␣-helix mutation may alter the sequential steps or kinetics of the conformational changes required for inhibition, thereby causing P35 loss of function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.