Enolase is a glycolytic and gluconeogenic enzyme also found on the surface of several eukaryotic and prokaryotic cells where it acts as plasminogen binding protein. Leishmania mexicana, one of the causative agents of Leishmaniasis, binds plasminogen and, in this parasite, enolase has been previously found associated with the external face of the plasma membrane. In this work, we show that the purified recombinant enolase has plasminogen binding activity indicating that, at the surface of the parasite, the protein may function as one of the plasminogen receptors. An internal motif (249)AYDAERKMY(257), similar to the nine amino-acid internal plasminogen-binding motif in Streptococcus pneumoniae enolase, is responsible for plasminogen interaction with the parasite enolase. Anti-enolase antibodies inhibited up to 60% of plasminogen binding on live parasites indicating that enolase act as a plasminogen receptor on the parasite. The fact that enolase acts as a possible plasminogen receptor in vivo makes this protein a promising target for therapy.
Glycolysis and glyconeogenesis play crucial roles in the ATP supply and synthesis of glycoconjugates, important for the viability and virulence, respectively, of the human-pathogenic stages of Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp. These pathways are, therefore, candidate targets for antiparasite drugs. The glycolytic/gluconeogenic enzyme enolase is generally highly conserved, with similar overall fold and identical catalytic residues in all organisms. Nonetheless, potentially important differences exist between the trypanosomatid and host enzymes, with three unique, reactive residues close to the active site of the former that might be exploited for the development of new drugs. In addition, enolase is found both in the secretome and in association with the surface of Leishmania spp. where it probably functions as plasminogen receptor, playing a role in the parasite's invasiveness and virulence, a function possibly also present in the other trypanosomatids. This location and possible function of enolase offer additional perspectives for both drug discovery and vaccination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.