We report on optical reflectivity experiments performed on Cd3As2 over a broad range of photon energies and magnetic fields. The observed response clearly indicates the presence of 3D massless charge carriers. The specific cyclotron resonance absorption in the quantum limit implies that we are probing massless Kane electrons rather than symmetry-protected 3D Dirac particles. The latter may appear at a smaller energy scale and are not directly observed in our infrared experiments.
Resistively detected nuclear magnetic resonance measurements have been performed on a high mobility heterostructure in the quantum Hall regime. At millikelvin temperatures the nuclear resonances are observed in the vicinity of various integer and fractional filling factors without previous dynamic nuclear polarization. Near nu = 1, the observed large enhancement of the resonance amplitude accompanied by a reduction of T1 strongly suggests a greatly increased coupling between the electronic and nuclear spin systems. This is consistent with the proposed coupling of the nuclear spin system to the Goldstone mode of the Skyrme crystal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.