We present state-of-the-art automatic speech recognition (ASR) systems employing a standard hybrid DNN/HMM architecture compared to an attention-based encoder-decoder design for the LibriSpeech task. Detailed descriptions of the system development, including model design, pretraining schemes, training schedules, and optimization approaches are provided for both system architectures. Both hybrid DNN/HMM and attentionbased systems employ bi-directional LSTMs for acoustic modeling/encoding. For language modeling, we employ both LSTM and Transformer based architectures. All our systems are built using RWTH's open-source toolkits RASR and RETURNN. To the best knowledge of the authors, the results obtained when training on the full LibriSpeech training set, are the best published currently, both for the hybrid DNN/HMM and the attention-based systems. Our single hybrid system even outperforms previous results obtained from combining eight single systems. Our comparison shows that on the LibriSpeech 960h task, the hybrid DNN/HMM system outperforms the attentionbased system by 15% relative on the clean and 40% relative on the other test sets in terms of word error rate. Moreover, experiments on a reduced 100h-subset of the LibriSpeech training corpus even show a more pronounced margin between the hybrid DNN/HMM and attention-based architectures.
We present a complete training pipeline to build a state-ofthe-art hybrid HMM-based ASR system on the 2nd release of the TED-LIUM corpus. Data augmentation using SpecAugment is successfully applied to improve performance on top of our best SAT model using i-vectors. By investigating the effect of different maskings, we achieve improvements from SpecAugment on hybrid HMM models without increasing model size and training time. A subsequent sMBR training is applied to fine-tune the final acoustic model, and both LSTM and Transformer language models are trained and evaluated. Our best system achieves a 5.6% WER on the test set, which outperforms the previous state-of-the-art by 27% relative.
The combination of acoustic models or features is a standard approach to exploit various knowledge sources. This paper investigates the concatenation of different bottleneck (BN) neural network (NN) outputs for tandem acoustic modeling. Thus, combination of NN features is performed via Gaussian mixture models (GMM). Complementarity between the NN feature representations is attained by using various network topologies: LSTM recurrent, feed-forward, and hierarchical, as well as different non-linearities: hyperbolic tangent, sigmoid, and rectified linear units. Speech recognition experiments are carried out on various tasks: telephone conversations, Skype calls, as well as broadcast news and conversations. Results indicate that LSTM based tandem approach is still competitive, and such tandem model can challenge comparable hybrid systems. The traditional steps of tandem modeling, speaker adaptive and sequence discriminative GMM training, improve the tandem results further. Furthermore, these "old-fashioned" steps remain applicable after the concatenation of multiple neural network feature streams. Exploiting the parallel processing of input feature streams, it is shown that 2-5% relative improvement could be achieved over the single best BN feature set. Finally, we also report results after neural network based language model rescoring and examine the system combination possibilities using such complex tandem models.
We study a streamable attention-based encoder-decoder model in which either the decoder, or both the encoder and decoder, operate on pre-defined, fixed-size windows called chunks. A special end-of-chunk (EOC) symbol advances from one chunk to the next chunk, effectively replacing the conventional end-of-sequence symbol. This modification, while minor, situates our model as equivalent to a transducer model that operates on chunks instead of frames, where EOC corresponds to the blank symbol. We further explore the remaining differences between a standard transducer and our model. Additionally, we examine relevant aspects such as long-form speech generalization, beam size, and length normalization. Through experiments on Librispeech and TED-LIUM-v2, and by concatenating consecutive sequences for long-form trials, we find that our streamable model maintains competitive performance compared to the non-streamable variant and generalizes very well to long-form speech.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.