Metabolic challenge protocols, such as the oral glucose tolerance test, can uncover early alterations in metabolism preceding chronic diseases. Nevertheless, most metabolomics data accessible today reflect the fasting state. To analyze the dynamics of the human metabolome in response to environmental stimuli, we submitted 15 young healthy male volunteers to a highly controlled 4 d challenge protocol, including 36 h fasting, oral glucose and lipid tests, liquid test meals, physical exercise, and cold stress. Blood, urine, exhaled air, and breath condensate samples were analyzed on up to 56 time points by MS- and NMR-based methods, yielding 275 metabolic traits with a focus on lipids and amino acids. Here, we show that physiological challenges increased interindividual variation even in phenotypically similar volunteers, revealing metabotypes not observable in baseline metabolite profiles; volunteer-specific metabolite concentrations were consistently reflected in various biofluids; and readouts from a systematic model of β-oxidation (e.g., acetylcarnitine/palmitylcarnitine ratio) showed significant and stronger associations with physiological parameters (e.g., fat mass) than absolute metabolite concentrations, indicating that systematic models may aid in understanding individual challenge responses. Due to the multitude of analytical methods, challenges and sample types, our freely available metabolomics data set provides a unique reference for future metabolomics studies and for verification of systems biology models.
Human angiotensin II, chain B of bovine insulin, and porcine insulin were determined by time-of-flight secondary ion mass spectrometry under impact of approximately 25 keV Xe+ and SF5+ ion beams and approximately 100 MeV 252Cf fission fragments. Matrix-embedded samples, dissolved in a large surplus of alpha-cyano-4-hydroxycinnamic acid, were prepared by nebulizer spray deposition, neat samples by the droplet technique. It is shown that the status of the sample can be assessed by evaluating the matrix-specific features of the mass spectra. The beneficial effect of matrix isolation was small for angiotensin but large for the insulin samples, which did not show parent peaks from neat material. Negative ion yields under SF5+ impact were up to a factor of 50 higher than with Xe+. For positive secondary ions, the enhancement was much smaller. The mass spectra produced by slow ion beams or fast fission fragments were qualitatively similar. Quantitative differences include the following: with fast projectiles the yields were about 10-30 times higher than with slow ions, but similar for negative ion emission under SF5+ bombardment; the analyte-to-matrix yield ratios were higher with slow ions and up to 250 times higher than the molar analyte concentration; for analyte ions the peak-to-background ratios were higher using slow projectiles; the fraction of carbon-rich collisionally formed molecular ions was much higher with fast projectiles. Sample aging in vacuum for up to five weeks strongly reduced the yield of protonated analyte molecules ejected by slow ion impact, but not of deprotonated species. Hence protonation seems to correlate with sample "wetness" or the presence of volatile proton-donating additives.
Proton transfer reaction mass spectrometry (PTR-MS) has been used to analyze the volatile organic compounds (VOCs) emitted by in-vitro cultured human cells. For this purpose, two pairs of cancerous and non-cancerous human cell lines were selected:1. lung epithelium cells A-549 and retinal pigment epithelium cells hTERT-RPE1, cultured in different growth media; and 2. squamous lung carcinoma cells EPLC and immortalized human bronchial epithelial cells BEAS2B, cultured in identical growth medium. The VOCs in the headspace of the cell cultures were sampled: 1. online by drawing off the gas directly from the culture flask; and 2. by accumulation of the VOCs in PTFE bags connected to the flask for at least 12 h. The pure media were analyzed in the same way as the corresponding cells in order to provide a reference. Direct comparison of headspace VOCs from flasks with cells plus medium and from flasks with pure medium enabled the characterization of cell-line-specific production or consumption of VOCs. Among all identified VOCs in this respect, the most outstanding compound was m/z = 45 (acetaldehyde) revealing significant consumption by the cancerous cell lines but not by the non-cancerous cells. By applying multivariate statistical analysis using 42 selected marker VOCs, it was possible to clearly separate the cancerous and non-cancerous cell lines from each other.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.