In order to analyze the interaction of multiple rows of film cooling holes in flows at adverse pressure gradients, large-eddy simulations (LESs) are performed. The considered three-row cooling configuration consists of inclined cooling holes at an angle of 30 deg with a lateral pitch of p/D=3 and a streamwise spacing of l/D=6. The cooling holes possess a fan-shaped exit geometry with lateral and streamwise expansions. For each cooling row the complete internal flow is computed. Air and CO2 are injected in order to investigate the influence of an increased density ratio on the film cooling physics at adverse pressure gradients. The CO2 injected at the same blowing rate as air shows a higher magnitude of the Reynolds shear stress component and, thus, an enhanced mixing downstream of the cooling holes. The LES results of the air and CO2 configurations are compared to the corresponding particle-image velocimetry (PIV) measurements and show a convincing agreement in terms of the averaged streamwise velocity and streamwise velocity fluctuations. Furthermore, the cooling effectiveness is investigated for a zero and an adverse pressure gradient configuration with a temperature ratio at gas turbine conditions. For the adverse pressure gradient case, reduced temperature levels off the wall are observed. However, the cooling effectiveness shows only minor differences compared to the zero pressure gradient flow. The turbulent Schmidt number at CO2 injection shows large variations. Just downstream of the injection it attains low values, whereas high values are detected in the upper mixing zone of the cooling flow and the freestream at each film cooling row.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.