Bone is one of the most frequent sites for metastasis in breast cancer patients often resulting in significant clinical morbidity and mortality. Bisphosphonates are currently the standard of care for breast cancer patients with bone metastasis. We have shown previously that doxycycline, a member of the tetracycline family of antibiotics, reduces total tumour burden in an experimental bone metastasis mouse model of human breast cancer. In this study, we combined doxycycline treatment together with zoledronic acid, the most potent bisphosphonate. Drug administration started 3 days before the injection of the MDA-MB-231 cells. When mice were administered zoledronic acid alone, the total tumour burden decreased by 43% compared to placebo treatment. Administration of a combination of zoledronic acid and doxycycline resulted in a 74% decrease in total tumour burden compared to untreated mice. In doxycycline-and zoledronate-treated mice bone formation was significantly enhanced as determined by increased numbers of osteoblasts, osteoid surface and volume, whereas a decrease in bone resorption was also observed. Doxycycline greatly reduced tumour burden and could also compensate for the increased bone resorption. The addition of zoledronate to the regimen further decreased tumour burden, caused an extensive decrease in bone-associated soft tissue tumour burden (93%), and sustained the bone volume, which could result in a smaller fracture risk. Treatment with zoledronic acid in combination with doxycycline may be very beneficial for breast cancer patients at risk for osteolytic bone metastasis.
A mounting body of evidence suggests that increased production of reactive oxygen species (ROS) is linked to aging processes and to the etiopathogenesis of aging-related diseases, such as cancer, diabetes, atherosclerosis and degenerative diseases like Parkinson's and Alzheimer's. Excess ROS are deleterious to normal cells, while in cancer cells, they can lead to accelerated tumorigenesis. In prostate cancer (PC), oxidative stress, an innate key event characterized by supraphysiological ROS concentrations, has been identified as one of the hallmarks of the aggressive disease phenotype. Specifically, oxidative stress is associated with PC development, progression and the response to therapy. Nevertheless, a thorough understanding of the relationships between oxidative stress, redox homeostasis and the activation of proliferation and survival pathways in healthy and malignant prostate remains elusive. Moreover, the failure of chemoprevention strategies targeting oxidative stress reduced the level of interest in the field after the recent negative results of the Selenium and Vitamin E Cancer Prevention Trial (SELECT) trial. Therefore, a revisit of the concept is warranted and several key issues need to be addressed: The consequences of changes in ROS levels with respect to altered redox homeostasis and redox-regulated processes in PC need to be established. Similarly, the key molecular events that cause changes in the generation of ROS in PC and the role for therapeutic strategies aimed at ameliorating oxidative stress need to be identified. Moreover, the issues whether genetic/epigenetic susceptibility for oxidative stress-induced prostatic carcinogenesis is an individual phenomenon and what measurements adequately quantify prostatic oxidative stress are also crucial. Addressing these matters will provide a more rational basis to improve the design of redox-related clinical trials in PC. This review summarizes accepted concepts and principles in redox research, and explores their implications and limitations in PC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.