Aim: To perform a systematic review summarizing the knowledge of genetic variants, gene, and protein expression changes in humans and animals associated with urgency urinary incontinence (UUI) and to provide an overview of the known molecular mechanisms related to UUI. Methods: A systematic search was performed on March 2, 2020, in PubMed, Embase, Web of Science, and the Cochrane library. Retrieved studies were screened for eligibility. The risk of bias was assessed using the ROBINS-I (human) and SYRCLE (animal) tool. Data were presented in a structured manner and in the case of greater than five studies on a homogeneous outcome, a meta-analysis was performed. Results: Altogether, a total of 10,785 records were screened of which 37 studies met the inclusion criteria. Notably, 24/37 studies scored medium-high to high on risk of bias, affecting the value of the included studies. The analysis of 70 unique genes and proteins and three genome-wide association studies showed that specific signal transduction pathways and inflammation are associated with UUI.
Pelvic organ prolapse (POP) represents a major health care burden in women, but its underlying pathophysiological mechanisms have not been elucidated. We first used a case-control design to perform an exome chip study in 526 women with POP and 960 control women to identify single nucleotide variants (SNVs) associated with the disease. We then integrated the functional interactions between the POP candidate proteins derived from the exome chip study and other POP candidate molecules into a molecular landscape. We found significant associations between POP and SNVs in 54 genes. The proteins encoded by 26 of these genes fit into the molecular landscape, together with 43 other POP candidate molecules. The POP landscape is located in and around epithelial cells and fibroblasts of the urogenital tract and harbors four interacting biological processes—epithelial-mesenchymal transition, immune response, modulation of the extracellular matrix, and fibroblast function—that are regulated by sex hormones and TGFB1. Our findings were corroborated by enrichment analyses of differential gene expression data from an independent POP cohort. Lastly, based on the landscape and using vaginal fibroblasts from women with POP, we predicted and showed that metformin alters gene expression in these fibroblasts in a beneficial direction. In conclusion, our integrated molecular landscape of POP provides insights into the biological processes underlying the disease and clues towards novel treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.