The epidermis of both species of Seison is syncytial and has a characteristic internal layer divided into two distinct sublayers. Sublayer I is very thin (0.03 µm) and bounded to the outer cell membrane of the epidermis. Sublayer II is 0.5 µm thick and separated from sublayer I by a thin layer of cytoplasm. Intrusions of the outer cell membrane of the epidermis perforate the internal layer, before terminating within the cytoplasm.
Novel implications for the basal internal relationships of Gastrotricha revealed by an analysis of morphological characters. -Zoologica Scripta , 37 , 429-460. A cladistic analysis of Gastrotricha based on morphological characters is presented. Unlike previous morphological analyses, our study uses species rather than higher level taxa, for which the ground pattern is often unknown. The analysis comprises 79 ingroup taxa, 4 outgroup taxa and 135 binary and multistate characters in total. Character coding is based on a careful assessment of original species descriptions. Characters included cover general body organization, internal and external features as, for example, data on the adhesive tubes, digestive tract or cuticle armament. Character systems such as many ultrastructural findings, for which it was problematic to obtain data for a large set of the included taxa, were not considered. To minimize a priori assumptions, all characters were treated with equal weight and left unordered. The four outgroup representatives were chosen in accordance with the current sister group hypotheses for Gastrotricha. Two search strategies, a heuristic search (maximum parsimony) and a parsimony ratchet search, reveal a comparable scenario. Gastrotricha split into two sister taxa. One group comprises genus Neodasys only, the sister group N.N.1 (Eutubulata nom. nov.) consists of all remaining Gastrotricha. Within Eutubulata, monophyletic Macrodasyida s. str. and N.N.2 (Abursata nom. nov.) are sister taxa of highest rank. Abursata consists of the 'freshwater macrodasyids' Marinellina and Redudasys as sister group of monophyletic Paucitubulatina. Some traditional families are supported by this analysis. We evaluate possible apomorphies for the most basal stem lineages and track the evolution of selected organs. Our findings reveal that secondary character loss may play an important role in the stem lineage of Abursata and further in Paucitubulatina. Moreover, according to this analysis there might have been a single invasion of the freshwater environment in the stem lineage of Abursata followed by several independent returns to marine habitats within the monophylum Paucitubulatina.
Abstract. The reproductive anatomy of gastrotrichs is well known for several species, especially for the marine taxon Macrodasyida. However, there is little information on the reproductive organs and the modes of mating and sperm transfer in putative basal taxa, which is necessary for accurate reconstruction of the ground pattern of the Gastrotricha. We present the first detailed morphological investigation of the reproductive system of a putative basal gastrotrich, Dactylopodola typhle, using transmission and scanning electron microscopy, histology, and microscopic observations of living specimens. Dactylopodola typhle is a hermaphrodite that possesses paired female and male gonads, an unpaired uterus with an outlet channel that we call the cervix, and an additional accessory reproductive organ, the so-called caudal organ. We hypothesize that the hollow, secretory caudal organ serves for picking up autospermatozoa (self-sperm), for spermatophore formation, and finally for transferring the autospermatophore to a mating partner. The allospermatophore (foreign spermatophore) is stored within the uterus where fertilization occurs. We think that the mature and fertilized egg is released through the cervix and the dorsolateral female gonopore, and not by rupture of the body wall. Based on the morphology, we provide a plausible hypothesis for spermatophore formation and transfer in D. typhle. Preliminary phylogenetic considerations indicate that the stem species of Macrodasyida, perhaps that of all Gastrotricha, had paired ovaries and paired testes, an unpaired uterus, and only one accessory reproductive organ.
In an attempt to obtain detailed information on the entire protonephridial system in Gastrotricha, we have studied the protonephridial ultrastructure of two paucitubulatan species, Xenotrichula carolinensis syltensis and Chaetonotus maximus by means of complete sets of ultrathin sections. In spite of some diVerences in detail, the morphology of protonephridia in both examined species shows a common pattern: Both species have one pair of protonephridia that consist of a bicellular terminal organ, a voluminous, aciliar canal cell and an adjacent, aciliar nephridiopore cell. The terminal organ consists of two monociliar terminal cells each with a distal cytoplasmic lobe. These lobes interdigitate and surround cilia and microvilli of the terminal cells. Where both lobes interdigitate, a meandering cleft is formed that is covered by the Wltration barrier. We here term the entire structure composite Wlter. The elongated, in some regions convoluted protonephridial lumen opens distally to the outside via a permanent nephridiopore. A comparison with the protonephridia of other species of the Gastrotricha allows hypothesising the following autapomorphies of the Paucitubulata: The bicellular terminal organ with a composite Wlter, the convoluted distal canal cell lumen and the absence of cilia, ciliary basal structures and microvilli within the canal cell. Moreover, this comparative survey could conWrm important characteristics of the protonephridial system assumed for the ground pattern of Gastrotricha like, for example, the single terminal cell with one cilium surrounded by eight microvilli.
Rotifers are characterized by a complex set of cuticularized jaw elements in the pharynx. The fine structure of the jaw elements has been the subject of SEM studies for some time, but only very limited information exists on the ultrastructure of the jaw elements and their function beyond taxonomic considerations. Drawing on SEM and TEM techniques, the present study presents a detailed analysis of the mastax in Dicranophorus forcipatus, a carnivorous monogonont rotifer species from freshwater habitats characterized by an extrusible, grasping jaw apparatus. Based on ultrathin serial sections, the jaw elements are reconstructed and, in total, nine paired and two unpaired muscles identified. Possibly homologous muscles in other rotifer species are discussed and functional considerations of the forcipate mastax are suggested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.