Dolomite [Ca,Mg(CO3)2] precipitation from supersaturated ionic solutions at Earth surface temperatures is considered kinetically inhibited because of the difficulties experienced in experimentally reproducing such a process. Nevertheless, recent dolomite is observed to form in hypersaline and alkaline environments. Such recent dolomite precipitation is commonly attributed to microbial mediation because dolomite has been demonstrated to form in vitro in microbial cultures. The mechanism of microbially mediated dolomite precipitation is, however, poorly understood and it remains unclear what role microbial mediation plays in natural environments. In the study presented here, simple geochemical methods were used to assess the limitations and controls of dolomite formation in Deep Springs Lake, a highly alkaline playa lake in eastern California showing ongoing dolomite authigenesis. The sediments of Deep Springs Lake consist of unlithified, clay‐fraction dolomite ooze. Based on δ18O equilibria and textural observations, dolomite precipitates from oxygenated and agitated surface brine. The Na‐SO4‐dominated brine contains up to 500 mm dissolved inorganic carbon whereas Mg2+ and Ca2+ concentrations are ca 1 and 0·3 mm, respectively. Precipitation in the subsurface probably is not significant because of the lack of Ca2+ (below 0·01 mm). Under such highly alkaline conditions, the effect of microbial metabolism on supersaturation by pH and alkalinity increase is negligible. A putative microbial effect could, however, support dolomite nucleation or support crystal growth by overcoming a kinetic barrier. An essential limitation on crystal growth rates imposed by the low Ca2+ and Mg2+ concentrations could favour the thermodynamically more stable carbonate phase (which is dolomite) to precipitate. This mode of unlithified dolomite ooze formation showing δ13C values near to equilibrium with atmospheric CO2 (ca 3‰) contrasts the formation of isotopically light (organically derived), hard‐lithified dolomite layers in the subsurface of some less alkaline environments. Inferred physicochemical controls on dolomite formation under highly alkaline conditions observed in Deep Springs Lake may shed light on conditions that favoured extensive dolomite formation in alkaline Precambrian oceans, as opposed to modern oceans where dolomites only form diagenetically in organic C‐rich sediments.
Stromatolites are commonly interpreted as evidence of ancient microbial life, yet stromatolite morphogenesis is poorly understood. We apply radiometric tracer and dating techniques, molecular analyses and growth experiments to investigate siliceous stromatolite morphogenesis in Obsidian Pool Prime (OPP), a hot spring in Yellowstone National Park. We examine rates of stromatolite growth and the environmental and/or biologic conditions that affect lamination formation and preservation, both difficult features to constrain in ancient examples. The "main body" of the stromatolite is composed of finely laminated, porous, light-dark couplets of erect (surface normal) and reclining (surface parallel) silicified filamentous bacteria, interrupted by a less-distinct, well-cemented "drape" lamination. Results from dating studies indicate a growth rate of 1-5 cm year(-1) ; however, growth is punctuated. (14)C as a tracer demonstrates that stromatolite cyanobacterial communities fix CO(2) derived from two sources, vent water (radiocarbon dead) and the atmosphere (modern (14)C). The drape facies contained a greater proportion of atmospheric CO(2) and more robust silica cementation (vs. the main body facies), which we interpret as formation when spring level was lower. Systematic changes in lamination style are likely related to environmental forcing and larger scale features (tectonic, climatic). Although the OPP stromatolites are composed of silica and most ancient forms are carbonate, their fine lamination texture requires early lithification. Without early lithification, whether silica or carbonate, it is unlikely that a finely laminated structure representing an ancient microbial mat would be preserved. In OPP, lithification on the nearly diurnal time scale is likely related to temperature control on silica solubility.
Lamination in stromatolites (considered some of the oldest fossils on Earth) is commonly interpreted to record the periodic response of a microbial community to daily, seasonal, or perhaps yearly environmental forcing, but the inability to date ancient stromatolites precludes an understanding of the lamination formation processes. We use high-resolution 14 C dating of Holocene stromatolites from Walker Lake, Nevada (United States), to construct a record of lamination rate over the course of accretion. Laminae formed with a period of 5.6 ± 1.6 yr/ lamination at the base of the structure, 1.6-2.8 ± 1.9 yr/lamination in the middle, and 4.5 ± 0.8 yr/lamination at the top of the laminated portion. The predominant 4−6 yr periodicity indicates that lamination formation is likely more closely related to regional climate forcing (e.g., El Niño-Southern Oscillation) versus the typical diurnal or seasonal changes in microbial mats traditionally assumed for most ancient stromatolites. Thus, generalizations regarding the infl uence of microbial mats on stromatolite lamination and the use of stromatolites as biosignatures need careful consideration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.