Significance: Three-dimensional (3D) imaging and object tracking is critical for medical and biological research and can be achieved by multifocal imaging with diffractive optical elements (DOEs) converting depth (z) information into a modification of the two-dimensional image. Physical insight into DOE designs will spur this expanding field.Aim: To precisely track microscopic fluorescent objects in biological systems in 3D with a simple low-cost DOE system.Approach: We designed a multiring spiral phase plate (SPP) generating a single-spot rotating point spread function (SS-RPSF) in a microscope. Our simple, analytically transparent design process uses Bessel beams to avoid rotational ambiguities and achieve a significant depth range. The SPP was inserted into the Nomarski prism slider of a standard microscope. Performance was evaluated using fluorescent beads and in live cells expressing a fluorescent chromatin marker.Results: Bead localization precision was <25 nm in the transverse dimensions and ≤70 nm along the axial dimension over an axial range of 6 μm. Higher axial precision (≤50 nm) was achieved over a shallower focal depth of 2.9 μm. 3D diffusion constants of chromatin matched expected values.Conclusions: Precise 3D localization and tracking can be achieved with a SS-RPSF SPP in a standard microscope with minor modifications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.