Predators can affect individual fitness and population and community processes through lethal effects (direct consumption or 'density' effects), where prey is consumed, or through non-lethal effects (trait-mediated effects or interactions), where behavioural compensation to predation risk occurs, such as animals avoiding areas of high predation risk. Studies of invertebrates, fish and amphibians have shown that non-lethal effects may be larger than lethal effects in determining the behaviour, condition, density and distribution of animals over a range of trophic levels. Although non-lethal effects have been well described in the behavioural ecology of birds (and also mammals) within the context of anti-predation behaviour, their role relative to lethal effects is probably underestimated. Birds show many behavioural and physiological changes to reduce direct mortality from predation and these are likely to have negative effects on other aspects of their fitness and population dynamics, as well as affecting the ecology of their own prey and their predators. As a consequence, the effects of predation in birds are best measured by trade-offs between maximizing instantaneous survival in the presence of predators and acquiring or maintaining resources for long-term survival or reproduction. Because avoiding predation imposes foraging costs, and foraging behaviour is relatively easy to measure in birds, the foraging-predation risk trade-off is probably an effective framework for understanding the importance of non-lethal effects, and so the population and community effects of predation risk in birds and other animals. Using a trade-off approach allows us to predict better how changes in predator density will impact on population and community dynamics, and how animals perceive and respond to predation risk, when non-lethal effects decouple the relationship between predator density and direct mortality rate. The trade-off approach also allows us to identify where predation risk is structuring communities because of avoidance of predators, even when this results in no observable direct mortality rate.
Summary1. Estimating how much long-distance migrant populations spread out and mix during the non-breeding season (migratory connectivity) is essential for understanding and predicting population dynamics in the face of global change. 2. We quantify variation in population spread and inter-population mixing in long-distance, terrestrial migrant land-bird populations (712 individuals from 98 populations of 45 species, from tagging studies in the Neotropic and Afro-Palearctic flyways). We evaluate the Mantel test as a metric of migratory connectivity, and explore the extent to which variance in population spread can be explained simply by geography. 3. The mean distance between two individuals from the same population during the nonbreeding season was 743 km, covering 10-20% of the maximum width of Africa/South America. Individuals from different breeding populations tended to mix during the non-breeding season, although spatial segregation was maintained in species with relatively large non-breeding ranges (and, to a lesser extent, those with low population-level spread). A substantial amount of between-population variation in population spread was predicted simply by geography, with populations using non-breeding zones with limited land availability (e.g. Central America compared to South America) showing lower population spread. 4. The high levels of population spread suggest that deterministic migration tactics are not generally adaptive; this makes sense in the context of the recent evolution of the systems, and the spatial and temporal unpredictability of non-breeding habitat. 5. The conservation implications of generally low connectivity are that the loss (or protection) of any non-breeding site will have a diffuse but widespread effect on many breeding populations. Although low connectivity should engender population resilience to shifts in habitat (e.g. due to climate change), we suggest it may increase susceptibility to habitat loss. We hypothesize that, because a migrant species cannot adapt to both simultaneously, migrants generally may be more susceptible to population declines in the face of concurrent anthropogenic habitat and climate change.
In most long-distance migratory birds, juveniles migrate without their parents and so are likely to lack detailed knowledge of where to go. This suggests the potential for stochasticity to affect their choice of wintering area at a large scale (> 1000 km). Adults, in contrast, may re-use non-breeding sites that promote their survival, so removing uncertainty from their subsequent migrations. I review the evidence for large-scale stochastic juvenile site selection followed by adult site fidelity, and then develop a 'serial-residency' hypothesis based on these two traits as a framework to explain both the migratory connectivity and the population dynamics of migrant birds and how these are affected by environmental change. Juvenile stochasticity is apparent in the age-dependent effects of weather or experimental displacement on the outcome of migration and in the very wide variation in the destinations of individuals originating from the same area. Adults have been shown to be very faithful to their wintering grounds and even to staging sites. The serial residency hypothesis predicts that migrants that show these two traits will rely on an individually unique but fixed series of temporally and spatially linked sites to complete their annual cycle. As a consequence, migratory connectivity will be apparent at a very small scale for individuals, but only at a large scale for a population, and juveniles are predicted to occur more often at less suitable sites than adults, so that survival will be lower for juveniles. Migratory connectivity will arise only through spatial and temporal autocorrelation with local environmental constraints, particularly on passage, and the distribution and age structure of the population may reflect past environmental constraints. At least some juveniles will discover suitable habitat that they may re-use as adults, thus promoting overall population-level resilience to environmental change, and suggesting value in site-based conservation. However, because migratory connectivity only acts on a large scale, any population of migrants will contain individuals that encounter a change in suitability somewhere in their non-breeding range, so affecting average survival. Differences in population trends will therefore reflect variation in local breeding output added to average survival from wintering and staging areas. The latter is likely to be declining given increasing levels of environmental degradation throughout Africa. Largescale migratory connectivity also has implications for the evolutionary ecology of migrants, generally because this is likely to lead to selection for generalist traits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.