From January through July of 2000, a study was conducted to evaluate clearance, immunologic responses, and potential shedding of Brucella abortus strain RB51 (SRB51) following ballistic or subcutaneous (SQ) vaccination of 7 mo old bison (Bison bison) calves. Ten bison calves were vaccinated SQ with 1.4 x 10(10) colony-forming units (CFU) of SRB51 and five calves were inoculated SQ with sterile 0.15 M sodium chloride. An additional 10 bison calves were ballistically inoculated in the rear leg musculature with 1 x 10(10) CFU of SRB51 and five calves were ballistically inoculated with an empty Biobullet. Serologic responses were monitored at 0, 2, 4, 6, 8, 12, 18, and 24 wk using the standard tube agglutination test and a dot-blot assay. Swabs from rectal, vaginal, nasal, and ocular mucosal surfaces, and blood were obtained for culture from all bison at 2, 4, 6, and 8 weeks post-inoculation to evaluate potential shedding by vaccinated bison or persistent septicemia. The superficial cervical lymph node was biopsied in eight ballistic and eight hand vaccinated bison at 6 or 12 wk to evaluate clearance of the vaccine strain from lymphatic tissues. Lymphocyte proliferative responses to irradiated SRB51 bacteria were evaluated in peripheral blood mononuclear cells (PBMC) at 4, 6, 8, 12, 18, and 24 wk after inoculation. Serum obtained from hand or ballistically vaccinated bison demonstrated antibody responses on the dot-blot assay that were greater than control bison (saline or empty Biobullet) at 2, 4, 6, and 8 wk after vaccination. Antibody titers of ballistically vaccinated bison did not differ (P > 0.05) from hand vaccinated bison at any sampling time. Blood samples obtained from all bison at 2, 4, 6 and 8 wk after vaccination were negative for SRB51. One colony of SRB51 was recovered from the vaginal swab of one ballistically vaccinated bison at 2 wk after vaccination. All other ocular, vaginal, nasal, and rectal swabs were culture negative for SRB51. Strain RB51 was recovered from superficial cervical lymph nodes of hand and ballistic vaccinated bison at 6 (two of four and two of four bison, respectively) and 12 wk (three of four and one of four bison, respectively). Serologic tests and bacterial culture techniques failed to demonstrate infection of nonvaccinated bison. Peripheral blood mononuclear cells obtained from hand vaccinated bison had greater (P < 0.05) proliferative responses to strain RB51 bacteria when compared to PBMC from nonvaccinated and ballistically vaccinated bison. Proliferative responses of PBMC from ballistically vaccinated bison did not differ (P > 0.05) at any sampling time from proliferative responses of PBMC from control bison. Serum alpha 1-acid glycoprotein concentrations, plasma fibrinogen, and total protein concentrations were not influenced by treatments. Ballistic delivery of SRB51 did not induce adverse effects or influence clearance of the vaccine strain. There were no proliferative responses of PBMC to SRB51 in bison ballistically vaccinated with SRB51; whereas bison inoculated wit...
RNA methylation is a type of posttranscriptional modification that plays an important role in controlling gene expression. The organism Trypanosoma brucei, the protozoan parasite responsible for Human African Trypanosomiasis, does not seem to have abundant promoter regions or transcriptional regulation machinery. Thus, RNA methylation may play an especially important role in regulating gene expression in this organism. We have identified the presence of 5‐methylcytosine in T. brucei RNA using both mass spectrometry and sodium bisulfite sequencing. Recently, we have identified seven putative cytosine RNA methyltransferase (CRMT) genes in T. brucei. All seven CRMTs are expressed in bloodstream and procyclic form parasites, as detected by qRT‐PCR. Two of the putative CRMTs, termed CRMT4 and CRMT5, are required for maximum parasite growth. Although we suspect these genes to be RNA methyltransferases, we do not have evidence for RNA methyltransferase activity. Both CRMT4 and CRMT5 were expressed in E. coli with N‐terminal 6x‐histidine tags. CRMT4 was produced in E. coli but was difficult to purify. SDS‐PAGE results for an N‐terminal His tagged protein indicate CRMT4 insolubility. Our next step will be to use PCR to create smaller fragments of CRMT4, which may be soluble. CRMT5 was produced in E. coli with an N‐terminal His tag and purified using a His‐affinity column. Purified CRMT5 was used in a series of methyltransferase assays using luciferase activity as a readout. CRMT5 addition results in luciferase activity in the presence of cytosine‐containing RNA (T. brucei total RNA and Poly‐IC RNA). There was little to no luciferase activity observed in the presence of RNA that lacks cytosine or when a mock purification from E. coli without the CRMT5 gene was used. Our next step will be to perform a methyltransferase reaction with CRMT5 and subsequently isolate the RNA for bisulfite sequencing to confirm the methylation of cytosine bases. Evidence for the presence of 5‐methylcytosine and RNA methyltransferases indicates the presence of a process to create an epitranscriptome in T. brucei.Support or Funding InformationNIH, 1R15AI133428‐01This abstract is from the Experimental Biology 2019 Meeting. There is no full text article associated with this abstract published in The FASEB Journal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.