Initial offspring size is a fundamental component of absolute growth rate, where large offspring will reach a given adult body size faster than smaller offspring. Yet, our knowledge regarding the coevolution between offspring and adult size is limited. In time-constrained environments, organisms need to reproduce at a high rate and reach a reproductive size quickly. To rapidly attain a large adult body size, we hypothesize that, in seasonal habitats, large species are bound to having a large initial size, and consequently, the evolution of egg size will be tightly matched to that of body size, compared to less time-limited systems. We tested this hypothesis in killifishes, and found a significantly steeper allometric relationship between egg and body sizes in annual, compared to nonannual species. We also found higher rates of evolution of egg and body size in annual compared to nonannual species. Our results suggest that time-constrained environments impose strong selection on rapidly reaching a species-specific body size, and reproduce at a high rate, which in turn imposes constraints on the evolution of egg sizes. In combination, these distinct selection pressures result in different relationships between egg and body size among species in time-constrained versus permanent habitats.
Adaptive radiations have proven important for understanding the mechanisms and processes underlying biological diversity. The convergence of form and function, as well as admixture and adaptive introgression, are common in adaptive radiations.However, distinguishing between these two scenarios remains a challenge for evolutionary research. The Midas cichlid species complex (Amphilophus spp.) is a prime example of adaptive radiation, with phenotypic diversification occurring at various stages of genetic differentiation. One species, A. labiatus, has large fleshy lips, is associated with rocky lake substrates, and occurs patchily within Lakes Nicaragua and Managua. By contrast, the similar, but thin-lipped, congener, A. citrinellus, is more common and widespread. We investigated the evolutionary history of the large-lipped form, specifically regarding whether the trait has evolved independently in both lakes from ancestral thin-lipped populations, or via dispersal and/or admixture events.We collected samples from distinct locations in both lakes, and assessed differences in morphology and ecology. Using RAD-seq, we genotyped thousands of SNPs to measure population structure and divergence, demographic history, and admixture.We found significant between-species differences in ecology and morphology, local intraspecific differences in body shape and trophic traits, but only limited intraspecific variation in lip shape. Despite clear ecological differences, our genomic approach
Colour polymorphisms are a striking example of phenotypic diversity, yet the sources of selection that allow different morphs to persist within populations remain poorly understood. In particular, despite the importance of aggression in mediating social dominance, few studies have considered how heterospecific aggression might contribute to the maintenance or divergence of different colour morphs. To redress this gap, we carried out a field-based study in a Nicaraguan crater lake to investigate patterns of heterospecific aggression directed by the cichlid fish, Hypsophrys nicaraguensis, towards colour polymorphic cichlids in the genus Amphilophus. We found that H. nicaraguensis was the most frequent territorial neighbour of the colour polymorphic A. sagittae. Furthermore, when manipulating territorial intrusions using models, H. nicaraguensis were more aggressive towards the gold than dark colour morph of the sympatric Amphilophus species, including A. sagittae. Such a pattern of heterospecific aggression should be costly to the gold colour morph, potentially accounting for its lower than expected frequency and, more generally, highlighting the importance of considering heterospecific aggression in the context of morph frequencies and coexistence in the wild.
Metabolic rate is considered to determine the energetic investment placed into life-history traits, regulating the speed of an organism’s life-cycle and forming the so called “pace-of-life”. However, how metabolic rate and life-history traits co-evolve remains unclear. For instance, the energetic demands of life-history traits, including the number of energy allocation trade-offs, is unlikely to remain constant over ontogeny. Therefore, the predicted coevolution between metabolic rate and life-history could be specific to particular ontogenetic stages, rather than a stable property of an organism. Here, we test the ontogenetic dependency of the coevolution between metabolic rate and the pace of life-history, under strictly standardized conditions using 30 species of killifish, which are either annual species adapted to ephemeral pools or non-annual species inhabiting more permanent waterbodies. Standard metabolic rates were estimated at three ontogenetic stages, together with relevant life-history traits, i.e. growth (juveniles), maturity (young adults), and reproductive rate (reproductive adults). Life-history traits largely followed predicted pace-of-life patterns, with overall faster/higher rates in annual species. The divergences in life-history traits across species tended to increase over ontogeny, being smallest during juvenile growth and largest in reproductive adults. However, associations between life-history strategy and metabolic rate followed a reversed pattern, being strongest in juveniles, but lowest in reproductive adults. Our results are concordant with the number of energetic trade-offs increasing over ontogeny, which results in a stronger covariation between physiology and life-history traits earlier in ontogeny.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.