The aim of this study was to determine the accuracy and reliability of 5, 10, and 15 Hz global positioning system (GPS) devices. Two male subjects (mean ± SD; age, 25.5 ± 0.7 years; height, 1.75 ± 0.01 m; body mass, 74 ± 5.7 kg) completed 10 repetitions of drills replicating movements typical of tennis, cricket, and field-based (football) sports. All movements were completed wearing two 5 and 10 Hz MinimaxX and 2 GPS-Sports 15 Hz GPS devices in a specially designed harness. Criterion movement data for distance and speed were provided from a 22-camera VICON system sampling at 100 Hz. Accuracy was determined using 1-way analysis of variance with Tukey's post hoc tests. Interunit reliability was determined using intraclass correlation (ICC), and typical error was estimated as coefficient of variation (CV). Overall, for the majority of distance and speed measures, as measured using the 5, 10, and 15 Hz GPS devices, were not significantly different (p > 0.05) to the VICON data. Additionally, no improvements in the accuracy or reliability of GPS devices were observed with an increase in the sampling rate. However, the CV for the 5 and 15 Hz devices for distance and speed measures ranged between 3 and 33%, with increasing variability evident in higher speed zones. The majority of ICC measures possessed a low level of interunit reliability (r = -0.35 to 0.39). Based on these results, practitioners of these devices should be aware that measurements of distance and speed may be consistently underestimated, regardless of the movements performed.
This study compared physiological, physical and technical demands of Battlezone, traditional cricket training and one-day matches. Data were initially collected from 11 amateur, male cricket players (age: 22.2 ± 3.3 year, height: 1.82 ± 0.06 m body mass: 80.4 ± 9.8 kg) during four Battlezone and four traditional cricket training sessions encompassing different playing positions. Heart rate, blood lactate concentration, rating of perceived exertion and movement patterns of players were measured. Retrospective video analysis was performed to code for technical outcomes. Similar data were collected from 42 amateur, male cricket players (23.5 ± 4.7 year, 1.81 ± 0.07 m, 81.4 ± 11.4 kg) during one-day matches. Significant differences were found between Battlezone, traditional cricket training and one-day matches within each playing position. Specifically, Battlezone invoked the greatest physiological and physical demands from batsmen in comparison to traditional cricket training and one-day matches. However, the greatest technical demand for batsmen was observed during traditional cricket training. In regards to the other playing positions, a greater physiological, physical and technical demand was observed during Battlezone and traditional training than during one-day matches. These results suggest that the use of Battlezone and traditional cricket training provides players with a suitable training stimulus for replicating the physiological, physical and technical demands of one-day cricket.
This study aimed to determine which training method (net-based sessions or centrewicket simulations) currently used in national level and U19 male players cricket provided a more physical and technical match-specific training response. The heart rate, rating of perceived exertion and movement patterns of 42 male, cricket players were measured across the various training and match formats. Video analysis was coded retrospectively to quantify technical loads based on the cricket skills performed. Magnitude based inferences were based on the standardization of effect and presented with ±90% confidence intervals. Regardless of playing position, differences in physiological demands between training modes and match-play were unclear, with the exception of higher heart rates in fielders during traditional net sessions (mean heart rate: d= -2.7 [-4.7; -0.7]; 75% of maximum heart rate: d= -1. [-3.6; 0.9]). In conclusion, centre-wicket simulations more closely matched the physical demands of a One-Day match within batsmen and spin bowlers, whereas traditional cricket training often exceeded match-specific demands.
As cricket training typically involves separate skill and conditioning sessions, this study reported on the movement demands, physiological responses and reproducibility of the demands of small-sided cricket games. Thirteen amateur, male cricket players (age: 22.8 ± 3.5 years, height: 1.78 ± 0.06 m, body mass: 78.6 ± 7.1 kg) completed two sessions of a generic small-sided cricket game, termed Battlezone; consisting of six repeat 8-over bouts. Heart rate and movement demands were continuously recorded, whilst blood lactate concentration and perceived exertion were recorded after each respective bout. Batsmen covered the greatest distance (1147 ± 175 m) and demonstrated the greatest mean movement speed (63 ± 9 m · min⁻¹) during each bout. The majority of time (65-86%) was spent with a heart rate of between 51-85% HR(max) and a blood lactate concentration of 1.1-2.0 mmol · L⁻¹. Rating of perceived exertion ranged between 4.2-6.0. Movement demands and physiological responses did not differ between standardised sessions within respective playing positions (P > 0.05). The reliability for the majority of movement demands and physiological responses were moderate to high (CV: 5-17%; ICC: 0.48-1.00) within all playing positions. These results suggest that the physiological responses and movement characteristics of generic small-sided cricket games were consistent between sessions within respective playing positions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.