Ultra-thin walled cooling tubes for heat exchangers and condenser units have applications in multiple high-value manufacturing industries. Grade 2 commercially pure titanium (CP-2 Ti) requires far less mass to achieve the same mass flow handling abilities as stainless steel tubing yet it is more challenging to join, particularly at wall thicknesses less than 500 μm (termed ultra-thin walled tube). This paper presents a single-pass joinery method that produces reliable welds on 2.275 mm outer diameter (OD), 160 ± 10 μm wall thickness tubing with a service life of 20 of more years. This is achieved through an automated orbital gas tungsten constricted arc welding (GTCAW) process incorporating enveloping low-mass sleeves used in tandem with a buttressing internal gas pressure to support the molten metal and maintain consistent internal diameter inside the tube. The industrial applicability is demonstrated through the production of a 1:1 scale mock-up of a fixed geometry CO2 cooling circuit for a next-generation particle detector. The tensile strengths of the joints, 403.8 ± 4.2 MPa, exceed the tensile strength of the parent CP-2 Ti.
We present a thermodynamics experiment suitable for first year undergraduate students employing Stirling Engines to create a demonstration of energy transformation and to measure the mechanical efficiency of such engines. Using an inexpensive transparent chambered Stirling Engine, students can connect concepts such as the theoretical pressure-volume diagram with the physical movements of the engine’s pistons and the resultant useful output work of a spinning wheel. We found the majority of students successfully complete this experiment obtaining results similar to when performed by the authors. In addition to the core thermodynamics lesson, this experiment incorporates DC circuits, oscilloscopes, and data analysis so it can be integrated into a wider undergraduate physics course to combine the teaching of multiple subjects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.