Megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS) is characterized by prenatal-onset distended urinary bladder with functional intestinal obstruction, requiring extensive surgical intervention for survival. While it is believed to be an autosomal recessive disorder, most cases are sporadic. Through whole-exome sequencing in a child with MMIHS, we identified a de novo mutation, p.R178L, in the gene encoding the smooth muscle gamma-2 actin, ACTG2. We subsequently detected another de novo ACTG2 mutation, p.R178C, in an additional child with MMIHS. Actg2 transcripts were primarily found in murine urinary bladder and intestinal tissues. Structural analysis and functional experiments suggested that both ACTG2 mutants interfere with proper polymerization of ACTG2 into thin filaments, leading to impaired contractility of the smooth muscle. In conclusion, our study suggests a pathogenic mechanism for MMIHS by identifying causative ACTG2 mutations.
Optimal lysosome function requires maintenance of an acidic pH maintained by proton pumps in combination with a counterion transporter such as the Cl À /H þ exchanger, CLCN7 (ClC-7), encoded by CLCN7. The role of ClC-7 in maintaining lysosomal pH has been controversial. In this paper, we performed clinical and genetic evaluations of two children of different ethnicities. Both children had delayed myelination and development, organomegaly, and hypopigmentation, but neither had osteopetrosis. Whole-exome and-genome sequencing revealed a de novo c.2144A>G variant in CLCN7 in both affected children. This p.Tyr715Cys variant, located in the C-terminal domain of ClC-7, resulted in increased outward currents when it was heterologously expressed in Xenopus oocytes. Fibroblasts from probands displayed a lysosomal pH approximately 0.2 units lower than that of control cells, and treatment with chloroquine normalized the pH. Primary fibroblasts from both probands also exhibited markedly enlarged intracellular vacuoles; this finding was recapitulated by the overexpression of human p.Tyr715Cys CLCN7 in control fibroblasts, reflecting the dominant, gain-of-function nature of the variant. A mouse harboring the knock-in Clcn7 variant exhibited hypopigmentation, hepatomegaly resulting from abnormal storage, and enlarged vacuoles in cultured fibroblasts. Our results show that p.Tyr715Cys is a gain-of-function CLCN7 variant associated with developmental delay, organomegaly, and hypopigmentation resulting from lysosomal hyperacidity, abnormal storage, and enlarged intracellular vacuoles. Our data supports the hypothesis that the ClC-7 antiporter plays a critical role in maintaining lysosomal pH.
Patient now 19 years old has intellectual disability, developmental delay, absent speech, seizures, hypotonia, severe motor disability (non-ambulatory), short stature, relative macrocephaly. Patient uses gastric tube for feeding and has gastroesophageal reflux. Facial dysmorphisms include short palpebral fissures, large incisors, full eyebrows. Fingers are short and trident-shaped.Brain MRI revealed progressive cerebral and cerebellar volume loss, hypodensity in the left basal ganglia, unchanged and consistent with a lacune infarct (remote). There is a less conspicuous area of hypodensity on the contralateral side. There are hypodense white matter changes along the periventricular white matter and bilateral centrum semiovale.
Heterozygous variants in the arginine-glutamic acid dipeptide repeats gene (RERE) have been shown to cause neurodevelopmental disorder with or without anomalies of the brain, eye, or heart (NEDBEH). Here, we report nine individuals with NEDBEH who carry partial deletions or deleterious sequence variants in RERE. These variants were found to be de novo in all cases in which parental samples were available. An analysis of data from individuals with NEDBEH suggests that point mutations affecting the Atrophin-1 domain of RERE are associated with an increased risk of structural eye defects, congenital heart defects, renal anomalies, and sensorineural hearing loss when compared with loss-of-function variants that are likely to lead to haploinsufficiency. A high percentage of RERE pathogenic variants affect a histidine-rich region in the Atrophin-1 domain. We have also identified a recurrent two-amino-acid duplication in this region that is associated with the development of a CHARGE syndrome-like phenotype. We conclude that mutations affecting RERE result in a spectrum of clinical phenotypes. Genotype–phenotype correlations exist and can be used to guide medical decision making. Consideration should also be given to screening for RERE variants in individuals who fulfill diagnostic criteria for CHARGE syndrome but do not carry pathogenic variants in CHD7.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.