We tracked eight adult northern lapwings Vanellus vanellus (six females and two males) from a Dutch breeding colony by light-level geolocation year-round, three of them for multiple years. We show that birds breeding virtually next to each other may choose widely separated wintering grounds, stretching from nearby the colony west towards the UK and Ireland, and southwest through France into Iberia and Morocco. However, individual lapwings appeared relatively faithful to a chosen wintering area, and timing of outward and homeward migration can be highly consistent between years. Movements of migratory individuals were usually direct and fast, with some birds covering distances of approximately 2000 km within 2 to 4 days of travel. The two males wintered closest and returned earliest to the breeding colony. The female lapwings returned well before the onset of breeding, spending a pre-laying period of 19 to 54 days in the wider breeding area. Despite the potential for high migration speeds, the duration that birds were absent from the breeding area increased with distance to wintering areas, a pattern which was mainly driven by an earlier outward migration of birds heading for more distant wintering grounds. Moreover, females that overwintered closer to colony bred earlier. A large variation in migration strategies found even within a single breeding colony has likely supported the species' responsiveness to recent climate change as evidenced by a shortened migration distance and an advanced timing of reproduction in Dutch lapwings since the middle of the 20th century.Migration strategies may vary between species, populations, individuals and between years within an individual. Individuals from a particular breeding population may migrate to the same wintering area or they may spread out over much of the non-breeding range. These connections between breeding and non-breeding areas of a migratory species are called 'migratory connectivity', and the strength of migratory connectivity has implications for the species ecology, evolution and conservation (Webster et al. 2002). Furthermore, the choice of a certain wintering area and migratory strategy may affect annual schedules including timing of events at breeding area (Marra et al. 1998), which demonstrates the importance to follow individuals throughout the annual cycle. Knowledge of variation in migratory routines within and between individuals of a population is also important to understanding and predicting the ability of species responses to environmental change, including climate change (Conklin et al. 2013).We employed GLS (Global Location Sensing, also called 'light-level geolocation' or just 'geolocation') technique based on the analysis of diurnal changes in light levels to track annual movements of northern lapwings (Vanellus vanellus; here synonymously termed 'lapwing(s)'). Archival tags ('geolocators') record light intensities to determine dusk and dawn times from which geographical positions (two fixes daily) are calculated; day (night) length determin...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.