Opto-perforation is an interesting alternative to conventional techniques for gene transfer into living cells. The cell membrane is perforated by femtosecond (fs) laser pulses, in order to induce an uptake of macromolecules e.g. DNA. In this study, we successfully transfected a canine cell line (MTH53a) with GFP vector or a vector coding for a GFP-HMGB1 fusion protein. The transfected cells were observed 48 hours after treatment and they were not showing any signs of apoptosis or necrosis. Based on simultaneously measured membrane potential changes during the perforation, we were able to calculate and experimentally verify that the relative volume exchanged is 0.4 times the total cell volume. Thus, for first time a quantitative predication of the amount of uptaken molecules and therefore a quantification of the transfection is possible. Additionally, this method offers new high efficient possibilities for critical transfection approaches involving special cell types, e.g. primary and stem cells.
The human cerebral microvascular endothelial cell line hCMEC/D3 was used to characterize the physiological link between adenosine receptors and the gap junction coupling in endothelial cells of the blood-brain barrier. Expressed adenosine receptor subtypes and connexin (Cx) isoforms were identified by RT-PCR. Scrape loading/dye transfer was used to evaluate the impact of the A and A adenosine receptor subtype agonist 2-phenylaminoadenosine (2-PAA) on the gap junction coupling. We found that 2-PAA stimulated cAMP synthesis and enhanced gap junction coupling in a concentration-dependent manner. This enhancement was accompanied by an increase in gap junction plaques formed by Cx43. Inhibition of protein kinase A did not affect the 2-PAA-related enhancement of gap junction coupling. In contrast, the cyclic nucleotide-gated (CNG) channel inhibitor l-cis-diltiazem, as well as the chelation of intracellular Ca with BAPTA, or the absence of external Ca , suppressed the 2-PAA-related enhancement of gap junction coupling. Moreover, we observed a 2-PAA-dependent activation of CNG channels by a combination of electrophysiology and pharmacology. In conclusion, the stimulation of adenosine receptors in hCMEC/D3 cells induces a Ca influx by opening CNG channels in a cAMP-dependent manner. Ca in turn induces the formation of new gap junction plaques and a consecutive sustained enhancement of gap junction coupling. The report identifies CNG channels as a physiological link that integrates gap junction coupling into the adenosine receptor-dependent signalling of endothelial cells of the blood-brain barrier.
The scrape-loading/dye transfer technique was applied on the bovine aortic endothelial cell line GM-7373 to analyze the effects of the antithrombolytic drug dipyridamole on gap junction coupling in endothelial cells. We found that a cell treatment for 24 h with dipyridamole in therapeutically relevant concentrations (1-100 microM) increased gap junction coupling in a dose dependent manner. Similar to dipyridamole, forskolin as well as 8-Br-cAMP increased the gap junction coupling, while dibutyryl-cGMP (db-cGMP) did not affect the gap junction coupling of the GM-7373 endothelial cells. In parallel, a pharmacological inhibition of protein kinase A (PKA) with N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride (H-89), antagonised the action of dipyridamole on gap junction coupling. We propose that the observed dipyridamole induced increase in gap junction coupling in endothelial cells is related to a cAMP-PKA dependent phosphorylation pathway. The report shows that gap junction coupling in endothelial cells is a suitable therapeutic target for treatment of cardiovascular diseases.
Whole-cell patch-clamp analysis revealed a resting membrane potential of -60 mV in primary osteoblasts and in the MG-63 osteoblast-like cells. Depolarisation-induced action potentials were characterised by duration of 60 ms, a minimal peak-to-peak distance of 180 ms, a threshold value of -20 mV and a repolarisation between the spikes to -45 mV.
Femtosecond (fs) laser-based cell surgery is typically done in two different regimes, at kHz or MHz repetition rate. Formation of reactive oxygen species (ROS) is an often predicted effect due to illumination with short laser pulses in biological tissue. We present our study on ROS formation in single cells in response to irradiation with fs laser pulses depending on the repetition rate while focusing into the cell nucleus. We observed a significant increase of ROS concentration directly after manipulation followed by a decrease in both regimes at kHz and MHz repetition rate. In addition, effects of consecutive exposures at MHz and kHz repetition rate and vice versa on ROS production were studied. Irradiation with a MHz pulse train followed by a kHz pulse train resulted in a significantly higher increase of ROS concentration than in the reversed case and often caused cell death. In the presence of the antioxidant ascorbic acid, accumulation of ROS and cell death were strongly reduced. Therefore, addition of antioxidants during fs laser-based cell surgery experiments could be advantageous in terms of suppressing photochemical damage to the cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.