Abstract. We present a nonhydrostatic finite-volume global atmospheric model formulation for numerical weather prediction with the Integrated Forecasting System (IFS) at ECMWF and compare it to the established operational spectral-transform formulation. The novel Finite-Volume Module of the IFS (henceforth IFS-FVM) integrates the fully compressible equations using semi-implicit time stepping and non-oscillatory forward-in-time (NFT) Eulerian advection, whereas the spectral-transform IFS solves the hydrostatic primitive equations (optionally the fully compressible equations) using a semi-implicit semi-Lagrangian scheme. The IFS-FVM complements the spectral-transform counterpart by means of the finite-volume discretization with a local low-volume communication footprint, fully conservative and monotone advective transport, all-scale deep-atmosphere fully compressible equations in a generalized height-based vertical coordinate, and flexible horizontal meshes. Nevertheless, both the finite-volume and spectral-transform formulations can share the same quasi-uniform horizontal grid with co-located arrangement of variables, geospherical longitude–latitude coordinates, and physics parameterizations, thereby facilitating their comparison, coexistence, and combination in the IFS. We highlight the advanced semi-implicit NFT finite-volume integration of the fully compressible equations of IFS-FVM considering comprehensive moist-precipitating dynamics with coupling to the IFS cloud parameterization by means of a generic interface. These developments – including a new horizontal–vertical split NFT MPDATA advective transport scheme, variable time stepping, effective preconditioning of the elliptic Helmholtz solver in the semi-implicit scheme, and a computationally efficient implementation of the median-dual finite-volume approach – provide a basis for the efficacy of IFS-FVM and its application in global numerical weather prediction. Here, numerical experiments focus on relevant dry and moist-precipitating baroclinic instability at various resolutions. We show that the presented semi-implicit NFT finite-volume integration scheme on co-located meshes of IFS-FVM can provide highly competitive solution quality and computational performance to the proven semi-implicit semi-Lagrangian integration scheme of the spectral-transform IFS.
Abstract. Weather and climate models are complex pieces of software which include many individual components, each of which is evolving under pressure to exploit advances in computing to enhance some combination of a range of possible improvements (higher spatio-temporal resolution, increased fidelity in terms of resolved processes, more quantification of uncertainty, etc.). However, after many years of a relatively stable computing environment with little choice in processing architecture or programming paradigm (basically X86 processors using MPI for parallelism), the existing menu of processor choices includes significant diversity, and more is on the horizon. This computational diversity, coupled with ever increasing software complexity, leads to the very real possibility that weather and climate modelling will arrive at a chasm which will separate scientific aspiration from our ability to develop and/or rapidly adapt codes to the available hardware. In this paper we review the hardware and software trends which are leading us towards this chasm, before describing current progress in addressing some of the tools which we may be able to use to bridge the chasm. This brief introduction to current tools and plans is followed by a discussion outlining the scientific requirements for quality model codes which have satisfactory performance and portability, while simultaneously supporting productive scientific evolution. We assert that the existing method of incremental model improvements employing small steps which adjust to the changing hardware environment is likely to be inadequate for crossing the chasm between aspiration and hardware at a satisfactory pace, in part because institutions cannot have all the relevant expertise in house. Instead, we outline a methodology based on large community efforts in engineering and standardisation, which will depend on identifying a taxonomy of key activities – perhaps based on existing efforts to develop domain-specific languages, identify common patterns in weather and climate codes, and develop community approaches to commonly needed tools and libraries – and then collaboratively building up those key components. Such a collaborative approach will depend on institutions, projects, and individuals adopting new interdependencies and ways of working.
In an attempt to advance the understanding of the Earth's weather and climate by representing deep convection explicitly, we present a global, four-month simulation (November 2018 to February 2019) with ECMWF's hydrostatic Integrated Forecasting System (IFS) at an average grid spacing of 1.4 km. The impact of explicitly simulating deep convection on the atmospheric circulation and its variability is assessed by comparing the 1.4 km simulation to the equivalent well-tested and calibrated global simulations at 9 km grid spacing with and without parametrized deep convection. The explicit simulation of deep convection at 1.4 km results in a realistic large-scale circulation, better representation of convective storm activity, and stronger convective gravity wave activity when compared to the 9 km simulation with parametrized deep convection. Comparison of the 1.4 km simulation to the 9 km simulation without parametrized deep convection shows that switching off deep convection parametrization at a too coarse resolution (i.e., 9 km) generates too strong convective gravity waves. Based on the limited statistics available, improvements to the Madden-Julian Oscillation or tropical precipitation are not observed at 1.4 km, suggesting that other Earth system model components and/or their interaction are important for an accurate representation of these processes and may well need adjusting at deep convection resolving resolutions. Overall, the good agreement of the 1.4 km simulation with the 9 km simulation with parametrized deep convection is remarkable, despite one of the most fundamental parametrizations being turned off at 1.4 km resolution and despite no adjustments being made to the remaining parametrizations. Plain Language Summary We present the world's first global simulation of an entire season of the Earth's atmosphere with 1.4 km average grid spacing and the top of the modeled atmosphere as high as 80 km. Albeit only a single realization due to its considerable computational cost, the resulting model output provides a reference and guidance for future simulations. For illustration we compare to simulations at 9 km grid spacing that represent the state of the art in numerical weather prediction and are still considerably finer when compared to models that are used for climate projections today. Thanks to its unprecedented detail, the simulation output will support future model development and satellite mission planning and may be seen as a prototype contribution to a future digital twin of our Earth.
Explicit Runge-Kutta schemes with large stable step sizes are developed for integration of high order spectral difference spatial discretizations on quadrilateral grids. The new schemes permit an effective time step that is substantially larger than the maximum admissible time step of standard explicit Runge-Kutta schemes available in literature. Furthermore, they have a small principal error norm and admit a low-storage implementation. The advantages of the new schemes are demonstrated through application to the Euler equations and the linearized
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.