During the last decades a large number of flavin-dependent monooxygenases have been isolated and studied. This has revealed that flavoprotein monooxygenases are able to catalyze a remarkable wide variety of oxidative reactions such as regioselective hydroxylations and enantioselective sulfoxidations. These oxidation reactions are often difficult, if not impossible, to be achieved using chemical approaches. Analysis of the available genome sequences has indicated that many more flavoprotein monooxygenases exist and await biocatalytic exploration. Based on the known biochemical properties of a number of flavoprotein monooxygenases and sequence and structural analyses, flavoprotein monooxygenases can be classified into six distinct flavoprotein monooxygenase subclasses. This review provides an inventory of known flavoprotein monooxygenases belonging to these different enzyme subclasses. Furthermore, the biocatalytic potential of a selected number of flavoprotein monooxygenases is highlighted.
How instructive cues present on the cell surface have their precise effects on the actin cytoskeleton is poorly understood. Semaphorins are one of the largest families of these instructive cues and are widely studied for their effects on cell movement, navigation, angiogenesis, immunology and cancer1. Semaphorins/collapsins were characterized in part on the basis of their ability to drastically alter actin cytoskeletal dynamics in neuronal processes2, but despite considerable progress in the identification of semaphorin receptors and their signalling pathways3, the molecules linking them to the precise control of cytoskeletal elements remain unknown. Recently, highly unusual proteins of the Mical family of enzymes have been found to associate with the cytoplasmic portion of plexins, which are large cell-surface semaphorin receptors, and to mediate axon guidance, synaptogenesis, dendritic pruning and other cell morphological changes4–7. Mical enzymes perform reduction–oxidation (redox) enzymatic reactions4,5,8–10 and also contain domains found in proteins that regulate cell morphology4,11. However, nothing is known of the role of Mical or its redox activity in mediating morphological changes. Here we report that Mical directly links semaphorins and their plexin receptors to the precise control of actin filament (F-actin) dynamics. We found that Mical is both necessary and sufficient for semaphorin–plexin-mediated F-actin reorganization in vivo. Likewise, we purified Mical protein and found that it directly binds F-actin and disassembles both individual and bundled actin filaments. We also found that Mical utilizes its redox activity to alter F-actin dynamics in vivo and in vitro, indicating a previously unknown role for specific redox signalling events in actin cytoskeletal regulation. Mical therefore is a novel F-actin-disassembly factor that provides a molecular conduit through which actin reorganization—a hallmark of cell morphological changes including axon navigation—can be precisely achieved spatiotemporally in response to semaphorins.
The shape of the active-site cavity controls substrate specificity by providing a 'size exclusion mechanism'. Inside the cavity, the substrate aromatic ring is positioned at an angle of 18 degrees to the flavin ring. This arrangement is ideally suited for a hydride transfer reaction, which is further facilitated by substrate deprotonation. Burying the substrate beneath the protein surface is a recurrent strategy, common to many flavoenzymes that effect substrate oxidation or reduction via hydride transfer.
Sequence analysis of a 9-kb genomic fragment of the actinobacterium Rhodococcus opacus 1CP led to identification of an open reading frame encoding a novel fusion protein, StyA2B, with a putative function in styrene metabolism via styrene oxide and phenylacetic acid. Gene cluster analysis indicated that the highly related fusion proteins of Nocardia farcinica IFM10152 and Arthrobacter aurescens TC1 are involved in a similar physiological process. Whereas 413 amino acids of the N terminus of StyA2B are highly similar to those of the oxygenases of two-component styrene monooxygenases (SMOs) from pseudomonads, the residual 160 amino acids of the C terminus show significant homology to the flavin reductases of these systems. Cloning and functional expression of His 10 -StyA2B revealed for the first time that the fusion protein does in fact catalyze two separate reactions. Strictly NADH-dependent reduction of flavins and highly enantioselective oxygenation of styrene to (S)-styrene oxide were shown. Inhibition studies and photometric analysis of recombinant StyA2B indicated the absence of tightly bound heme and flavin cofactors in this self-sufficient monooxygenase. StyA2B oxygenates a spectrum of aromatic compounds similar to those of two-component SMOs. However, the specific activities of the flavin-reducing and styrene-oxidizing functions of StyA2B are one to two orders of magnitude lower than those of StyA/StyB from Pseudomonas sp. strain VLB120.The incorporation of one atom of oxygen during hydroxylation, epoxidation, sulfoxidation, or Baeyer-Villiger oxidation is a common initial step of the aerobic degradation of aromatic compounds by microorganisms. In bacteria, these reactions are most frequently catalyzed by inducible flavoprotein monooxygenases (EC 1.14.13 [57]). The majority of these enzymes (socalled single-component flavoprotein monooxygenases) utilize electrons from NAD(P)H, which are transferred to a noncovalently bound flavin adenine dinucleotide (FAD) in order to activate molecular oxygen as a flavin (hydro)peroxide. Depending on the protonation of this intermediate and the type of substrate, an oxygen atom is then incorporated by nucleophilic or electrophilic attack. More recently, different twocomponent flavoprotein monooxygenases have been characterized (57). These systems cover an NAD(P)H-dependent flavin reductase in order to generate reduced flavin and an oxygenase that utilizes this cofactor for the activation of oxygen.The exquisite regio-and stereoselectivities of oxygen insertion by flavoprotein monooxygenases favor these enzymes for biocatalytic applications (23,24,33). This is especially true because chemical synthesis approaches by hetero-or homogenic catalysis often do not yield a sufficiently high enantiomeric excess for the production of pharmaceuticals and their chiral building blocks. The use of oxygen as an inexpensive nontoxic oxidant and mild reaction conditions are additional advantages with the potential for increasing the environmental sustainability of oxygenase-catalyzed bio...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.