The bones forming the talocrural joint (TCJ) and subtalar joint (STJ) are often assumed to be bilaterally symmetric. Therefore, the contralateral limb (i.e. the fibula, tibia, calcaneus and talus) is used as a template or an intra‐subject control in clinical and research practice. However, the validity of the symmetry assumption is controversial, because insufficient information is available on the shape variations and bilateral (a)symmetry of the fibula, tibia, calcaneus and talus. Using three‐dimensional spatially dense sampled representations of bone shapes extracted from bilateral computed tomography scans of 66 individuals (55 male, mean age: 61 ± 10 years; 11 female, mean age: 53 ± 15 years), we analyzed whether: (i) similar shape patterns exist in the left and right bones of the same type; (ii) gender has an effect on bone shape variations; (iii) intra‐subject shape variation is smaller than that of inter‐subject for a given shape variance direction. For the first set of analyses, all left and right instances of the same type of bone were considered as two separate groups, and statistically compared with each other on multiple aspects including group location (central tendency), variance‐covariance scale (dispersion) and orientation (covariance structure) using distance‐based permutational tests. For the second and third sets of analyses, all left and right bones of the same type were pooled into one group, and shape variations in the TCJ and STJ bones were extracted using principal component analysis. The effects of gender on age‐adjusted bone shape differences were assessed using an analysis of covariance. Moreover, intra‐class correlation was employed to evaluate intra‐ and inter‐subject bone shape variations. For each bone type, both sides had similar shape patterns (P permutational‐values > 0.05). After Bonferroni adjustment, gender led to shape differences, which were mainly in the lateral and medial condyles of the tibia (P = 0.003), the length and height of the calcaneus (P < 0.001), the posterior and anterior talar articular surfaces of the calcaneus (P = 0.001), and in the posterior aspect of the talus (P = 0.001). Intra‐subject shape variations in the tibial tuberosity together with the diameter of the tibia, and the curvature of the fibula shaft and the diameter of the fibula were as high as those of inter‐subject. This result suggests that the shape symmetry assumption could be violated for some specific shape variations in the fibula and tibia.
iffuse idiopathic skeletal hyperostosis (DISH) is a condition characterized by the formation of new bone along the anterolateral spinal column (1). The lower thoracic spine is most frequently affected, and ossifications of peripheral entheses are also frequently present in DISH (1,2). The prevalence of DISH varies between 2.9% and 42.0%, depending on the criteria used, demographic background, and presence of associated factors (3-6). Risk factors for developing DISH are older age, metabolic derangement (hypertension, obesity, diabetes mellitus), and cardiovascular disease (1,4). The pathogenesis of DISH is unknown (1). The three criteria established by Resnick and Niwayama are the criteria most frequently used for the diagnosis of DISH and include bridging of four adjacent vertebral bodies by newly formed bone, without severe loss of the intervertebral disk height and without degeneration of the apophyseal and sacroiliac joints (3,7). The Resnick and Niwayama criteria were designed so as to include only "definite" cases of DISH in their study, excluding other spinal pathologies such as ankylosing spondylitis (7). As a consequence, the threshold criteria for DISH are high and therefore possibly reflect a late or even end stage of DISH (3). Longitudinal research on the natural course of DISH has exposed a process of slow, ongoing formation of new bone (8-10). Over time, the number of affected vertebral body segments increases
A standardized method to assess structural osteoarthritis (OA) burden thorough the body lacks from literature. Such a method can be valuable in developing personalized treatments for OA. We developed a reliable scoring system to evaluate OA in large joints and the spine—the OsteoArthritis Computed Tomography (OACT) score, using a convenience sample of 197 whole-body low-dose non-contrast CTs. An atlas, containing example images as reference points for training and scoring, are presented. Each joint was graded between 0–3. The total OA burden was calculated by summing scores of individual joints. Intra- and inter-observer reliability was tested 25 randomly selected scans (N = 600 joints). Intra-observer reliability and inter-observer reliability between three observers was assessed using intraclass correlation coefficient (ICC) and square-weighted kappa statistics. The square-weighted kappa for intra-observer reliability for OACT-score at joint-level ranged from 0.79 to 0.95; the ICC for the total OA grade was 0.97 (95%-CI, 0.94 to 0.99). Square-weighted kappa for interobserver reliability ranged from 0.48 to 0.95; the ICC for the total OA grade was 0.95 (95%-CI, 0.90 to 0.98). The OACT score, a new reproducible CT-based grading system reflecting OA burden in large joints and the spine, has a satisfactory reproducibility. The atlas can be used for research purposes, training, educational purposes and systemic grading of OA on CT-scans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.