Recent research on the Flying V -a flying-wing long-range passenger aircraft -shows that its airframe design is 25% more aerodynamically efficient than a conventional tube-and-wing airframe. The Flying V is therefore a promising contribution towards reduction in climate impact of long-haul flights. However, some design aspects of the Flying V still remain to be investigated, one of which is automatic flight control. Due to the unconventional airframe shape of the Flying V, aerodynamic modelling cannot rely on validated aerodynamic-modelling tools and the accuracy of the aerodynamic model is uncertain. Therefore, this contribution investigates how an automatic flight controller that is robust to aerodynamic-model uncertainty can be developed, by utilising Twin-Delayed Deep Deterministic Policy Gradient (TD3) -a recent deep-reinforcement-learning algorithm. The results show that an offline-trained single-loop altitude controller that is fully based on TD3 can track a given altitude-reference signal and is robust to aerodynamic-model uncertainty of more than 25%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.